42 research outputs found

    Compressed Quantitative MRI: Bloch Response Recovery through Iterated Projection

    Get PDF
    Inspired by the recently proposed Magnetic Resonance Fingerprinting technique, we develop a principled compressed sensing framework for quantitative MRI. The three key components are: a random pulse excitation sequence following the MRF technique; a random EPI subsampling strategy and an iterative projection algorithm that imposes consistency with the Bloch equations. We show that, as long as the excitation sequence possesses an appropriate form of persistent excitation, we are able to achieve accurate recovery of the proton density, T1T_1, T2T_2 and off-resonance maps simultaneously from a limited number of samples.Comment: 5 pages 2 figure

    Learning Model-Based Sparsity via Projected Gradient Descent

    Full text link
    Several convex formulation methods have been proposed previously for statistical estimation with structured sparsity as the prior. These methods often require a carefully tuned regularization parameter, often a cumbersome or heuristic exercise. Furthermore, the estimate that these methods produce might not belong to the desired sparsity model, albeit accurately approximating the true parameter. Therefore, greedy-type algorithms could often be more desirable in estimating structured-sparse parameters. So far, these greedy methods have mostly focused on linear statistical models. In this paper we study the projected gradient descent with non-convex structured-sparse parameter model as the constraint set. Should the cost function have a Stable Model-Restricted Hessian the algorithm produces an approximation for the desired minimizer. As an example we elaborate on application of the main results to estimation in Generalized Linear Model

    Accelerated iterative hard thresholding

    No full text
    The iterativehardthresholding algorithm (IHT) is a powerful and versatile algorithm for compressed sensing and other sparse inverse problems. The standard IHT implementation faces several challenges when applied to practical problems. The step-size and sparsity parameters have to be chosen appropriately and, as IHT is based on a gradient descend strategy, convergence is only linear. Whilst the choice of the step-size can be done adaptively as suggested previously, this letter studies the use of acceleration methods to improve convergence speed. Based on recent suggestions in the literature, we show that a host of acceleration methods are also applicable to IHT. Importantly, we show that these modifications not only significantly increase the observed speed of the method, but also satisfy the same strong performance guarantees enjoyed by the original IHT method

    Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries

    Get PDF
    Compressive sensing (CS) has recently emerged as a powerful framework for acquiring sparse signals. The bulk of the CS literature has focused on the case where the acquired signal has a sparse or compressible representation in an orthonormal basis. In practice, however, there are many signals that cannot be sparsely represented or approximated using an orthonormal basis, but that do have sparse representations in a redundant dictionary. Standard results in CS can sometimes be extended to handle this case provided that the dictionary is sufficiently incoherent or well-conditioned, but these approaches fail to address the case of a truly redundant or overcomplete dictionary. In this paper we describe a variant of the iterative recovery algorithm CoSaMP for this more challenging setting. We utilize the D-RIP, a condition on the sensing matrix analogous to the well-known restricted isometry property. In contrast to prior work, the method and analysis are "signal-focused"; that is, they are oriented around recovering the signal rather than its dictionary coefficients. Under the assumption that we have a near-optimal scheme for projecting vectors in signal space onto the model family of candidate sparse signals, we provide provable recovery guarantees. Developing a practical algorithm that can provably compute the required near-optimal projections remains a significant open problem, but we include simulation results using various heuristics that empirically exhibit superior performance to traditional recovery algorithms
    corecore