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Abstract—We present a compressed sensing framework for quantitative
MRI based on Magnetic Resonance Fingerprinting. We show that, as long
as the excitation sequence induces persistent excitation, we are able to
achieve accurate recovery of the proton density, T1, T2 and off-resonance
maps simultaneously from very short pulse sequences.

I. INTRODUCTION

A new type of MRI acquisition scheme called Magnetic Resonance
Fingerprinting (MRF) [3] offers full quantification of multiple tissue
properties simultaneously through a single acquisition process. The
procedure is composed of 4 steps: (1) the material magnetization
is excited through a sequence of random RF pulses; (2) each pulse
response is recorded over a small portion of k-space; (3) a sequence
of highly aliased magnetization response images are formed using
back projection; and (4) parameter maps (proton density, ρ, T1, T2

and off-resonance, δf ) are formed using a bank of matched filters,
applied voxelwise.

We investigate this idea from a compressed sensing (CS) perspec-
tive and leverage recent results from [1] and develop a recovery
algorithm with good theoretical guarantees.

II. THE BLOCH RESPONSE MANIFOLD

The MRF process is based upon a random pulse excitation
sequence. Denote the magnetization response image sequence by
X ∈ CN×L, with Xi,t denoting the magnetization for voxel i at the
tth readout. The magnetization response at any voxel can be written
as a parametric nonlinear mapping from {ρi, θi} to the sequence Xi,:

as:
Xi,: = ρiB(θi;α,TR) ∈ C1×L, (1)

where L is the sequence length, θi = {T1, T2, δf} ∈ M is the set
of unknown parameters and B :M→ C1×L is a smooth mapping
induced by the Bloch dynamics.

Inferring {ρi, θi} from an estimate for Xi,: (assuming identifiabil-
ity) can be done by projecting onto a discretization of the cone of
the response manifold, which we denote as R+B.

Let θ(k)i = {T (k)
1 , T

(k)
2 , δf (k)}k=1:P be a discrete sampling ofM

and define the MRF “dictionary” D ∈ CP×L of the magnetization
responses as: Dk = B(θ

(k)
i ;α,TR), k = 1, . . . , P . The projection is

given by the maximum matched filter of the voxel response sequence
with the elements of D. After which the Bloch parameters can be
retrieved using a look up table.

III. K-SPACE SAMPLING

Unfortunately, it is impractical to observe the full spatial magne-
tization X:,t at each readout within the necessary time window and
we must resort to some form of undersampling in k-space, which we
denote by the mapping: Y = h(X).

In order to ensure parameter map recovery, we now exploit tools
from compressed sensing. In particular we would like h to induce
a low distortion embedding of the cone of the product response
manifold, (R+B)N , or equivalently satisfy a suitable RIP. In order to

achieve this it is useful to characterize the persistent discrimination
of the different magnetization responses. We quantify this persistence
through the flatness of the chords of R+B.

Definition 1: Let U be a collection of vectors {u} in CL. We
denote the flatness of the these vectors by

λ := max
u∈U
‖u‖∞/‖u‖2. (2)

Note that from standard norm inequalities L−1/2 ≤ λ ≤ 1.
For our sampling operator we consider regularly subsampling k-

space by a factor of p in one direction with random shifts at each
readout time. This can be achieved using a randomized version of
multishot Echo-Planar Imaging (EPI). The following theorem shows
that random EPI can provide the desired RIP.

Theorem 1 (RIP for random EPI): Given an excitation response
cone R+B of dimension dB, whose chords have a flatness λ, and
a random EPI operator h : (R+B)N → CM×L. With probability at
least 1− η, h is a restricted isometry on (R+B)N − (R+B)N with
constant δ as long as

λ−2 ≥ Cδ−2p2dB log(N/δη), (3)

for some constant C independent of p,N, dB, δ and η.
See [2] for further details.

IV. COMPRESSED QUANTITATIVE MRI

Assuming that Y = h(X) has a suitable RIP we can retrieve {ρ, θ}
from Y using an efficient iterated projection algorithm [1] along with
our discretized Bloch response model.

X(n+1) = P(R+B)N

[
X(n) + µhH

(
Y − h

(
X(n)

))]
, (4)

where n is the recursion index, P(R+B)N is the projection onto the
signal model (R+B)N approximated using D, and µ is a stepsize,
which we select adaptively. We call the resulting algorithm BLIP
(BLoch response recovery via Iterated Projection).

V. SIMULATIONS

In simulations on an anatomical brain phantom the BLIP procedure
was able to achieve near oracle performance with a pulse sequence
length of ∼ 200, substantially shorter than the already impressive
MRF performance. For full details see [2].
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