24,539 research outputs found

    Exact sampling and counting for fixed-margin matrices

    Full text link
    The uniform distribution on matrices with specified row and column sums is often a natural choice of null model when testing for structure in two-way tables (binary or nonnegative integer). Due to the difficulty of sampling from this distribution, many approximate methods have been developed. We will show that by exploiting certain symmetries, exact sampling and counting is in fact possible in many nontrivial real-world cases. We illustrate with real datasets including ecological co-occurrence matrices and contingency tables.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1131 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org). arXiv admin note: text overlap with arXiv:1104.032

    On the number of matrices and a random matrix with prescribed row and column sums and 0-1 entries

    Get PDF
    We consider the set Sigma(R,C) of all mxn matrices having 0-1 entries and prescribed row sums R=(r_1, ..., r_m) and column sums C=(c_1, ..., c_n). We prove an asymptotic estimate for the cardinality |Sigma(R, C)| via the solution to a convex optimization problem. We show that if Sigma(R, C) is sufficiently large, then a random matrix D in Sigma(R, C) sampled from the uniform probability measure in Sigma(R,C) with high probability is close to a particular matrix Z=Z(R,C) that maximizes the sum of entropies of entries among all matrices with row sums R, column sums C and entries between 0 and 1. Similar results are obtained for 0-1 matrices with prescribed row and column sums and assigned zeros in some positions.Comment: 26 pages, proofs simplified, results strengthene

    Exact Enumeration and Sampling of Matrices with Specified Margins

    Full text link
    We describe a dynamic programming algorithm for exact counting and exact uniform sampling of matrices with specified row and column sums. The algorithm runs in polynomial time when the column sums are bounded. Binary or non-negative integer matrices are handled. The method is distinguished by applicability to non-regular margins, tractability on large matrices, and the capacity for exact sampling
    • …
    corecore