3 research outputs found

    New Stability Criterion for Discrete-Time Genetic Regulatory Networks with Time-Varying Delays and Stochastic Disturbances

    Get PDF
    We propose an improved stability condition for a class of discrete-time genetic regulatory networks (GRNs) with interval time-varying delays and stochastic disturbances. By choosing an augmented novel Lyapunov-Krasovskii functional which contains some triple summation terms, a less conservative sufficient condition is obtained in terms of linear matrix inequalities (LMIs) by using the combination of the lower bound lemma, the discrete-time Jensen inequality, and the free-weighting matrix method. It is shown that the proposed results can be readily solved by using the Matlab software. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the theoretical results

    Exponential state estimation for competitive neural network via stochastic sampled-data control with packet losses

    Get PDF
    This paper investigates the exponential state estimation problem for competitive neural networks via stochastic sampled-data control with packet losses. Based on this strategy, a switched system model is used to describe packet dropouts for the error system. In addition, transmittal delays between neurons are also considered. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled-data estimator with probabilistic sampling in two sampling periods is proposed. Then the estimator is designed in terms of the solution to a set of linear matrix inequalities (LMIs), which can be solved by using available software. When the missing of control packet occurs, some sufficient conditions are obtained to guarantee that the exponentially stable of the error system by means of constructing an appropriate Lyapunov function and using the average dwell-time technique. Finally, a numerical example is given to show the effectiveness of the proposed method

    An advanced delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays

    Get PDF
    In this typescript, we concerned the problem of delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays. An advanced Lyapunov–Krasovskii functional are defined, which is in triple integral form. Combining the Lyapunov–Krasovskii functional with convex combination method and free-weighting matrix approach the stability conditions are derived with the help of linear matrix inequalities (LMIs). Some available software collections are used to solve the conditions. Lastly, two numerical examples and their simulations are conferred to indicate the feasibility of the theoretical concepts
    corecore