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We propose an improved stability condition for a class of discrete-time genetic regulatory networks (GRNs) with interval time-
varying delays and stochastic disturbances. By choosing an augmented novel Lyapunov-Krasovskii functional which contains some
triple summation terms, a less conservative sufficient condition is obtained in terms of linearmatrix inequalities (LMIs) by using the
combination of the lower bound lemma, the discrete-time Jensen inequality, and the free-weightingmatrixmethod. It is shown that
the proposed results can be readily solved by using the Matlab software. Finally, two numerical examples are provided to illustrate
the effectiveness and advantages of the theoretical results.

1. Introduction

Genetic regulatory networks (GRNs), which are structured
by the networks of the regulatory interactions among DNA,
RNA, and proteins, have become an important research
domain in the biological and biomedical sciences. Basically,
there are two basic types of the genetic regulatory network
models including the Boolean model [1] and the differen-
tial/difference equation model [2]. It should be noted that
it is difficult to give an accurate mathematical model for
the GRNs due to various reasons such as the limitations on
the experimental data, the noise in the data extraction, and
enormous complexity of the actual biological systems. So far,
a lot of effective analysis methods have been developed in the
relevant literatures, such as [3–5] and the references therein.
Accordingly, the stability analysis issues forGRNshave drawn
a great deal of attention and many important results have
been given in this area based on the Lyapunov stability theory;
see, for example, [6, 7].

It is revealed that the time delay is inevitable in the GRNs
due to the slow biochemical reactions including the actual

regulation, transcription, translation, diffusion, and translo-
cation, especially in that of a eukaryotic cell [8].The existence
of the time delays would degrade the performance of the
dynamical systems and even lead to the instability [9–16].
Hence, it is not surprising that there are a great number of
results concerning the stability analysis for GRNs with time
delays. For example, a functional differential equation model
has been introduced in [9] for GRNs with time delays and
its local stability and bifurcation have been discussed. In
[11], the discrete-time analog of the continuous-time GRNs
has been formulated and a stability analysis condition has
been given for the discrete-time GRNs with time delays. It is
worth noting that the above delayed GRNs are all concerning
the deterministic delays. However, in many practical sys-
tems (e.g., networked control systems), the network-induced
delay often appears as the time-varying feature. In [17], the
robust stability problem has been addressed for GRNs with
time-varying delays. Subsequently, the improved stability
criteria have been established for GRNs with interval time-
varying delays [18] and infinite-distributed delays [19]. In
[8], the authors have studied a class of GRNs with same
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transcriptional delays and translation delays which take
values in a finite set governed by a Markov chain with known
transition probabilities.

Note that the models in [6, 9] are all described by
the differential equations. However, during implementing
a continuous-time genetic regulatory network (GRN) for
computer simulation and experimental or computational
purposes, it is common to discretize the continuous-time
GRN to a discrete-time analogue.Therefore, there is a need to
study the dynamics behaviors of the discrete-time GRNs. Up
to now, there is a little work on the discrete-time GRNs with
delays [20–23]. Recently, the asymptotic stability problem has
been investigated in [24] for a class of discrete-time uncertain
stochastic GRNs with time-varying delays, where a set of
sufficient conditions to ensure the stability has been derived
in terms of LMIs, while the exponential stability analysis
and the robust 𝐻

∞
control problems for discrete-time GRNs

have been investigated in [25, 26]. On the other hand, it is
well recognized that the noise, which involves the intrinsic
fluctuation and extrinsic noise, may impose great effect on
system performance of the complex systems [27–31]. For
example, the global robust power-rate stability problem has
been studied in [28] for uncertain GRNs with unbounded
time-varying delay and noise perturbations based on the
Lyapunov method, Itô’s differential formula, and LMI tech-
nique. In [30], the authors have investigated the stability
problem for GRNs with time-varying delays and stochastic
fluctuations, where some sufficient conditions have been
given to guarantee the asymptotic stability and exponential
stability of the addressedGRNs. So far, it is worthmentioning
that there is a great need to analyze the stability problem
of delayed GRNs with stochastic disturbances by proposing
new analysis method with less conservatism, which has wide
applications in the biological/biomedical sciences; see, for
example, [32, 33].

In this paper, we aim to obtain an improved stability
criterion for discrete-time GRNs with interval time-varying
delays and stochastic disturbances based on the existing
methods. A new augmented Lyapunov-Krasovskii functional
is firstly constructed which contains some triple summation
terms. Furthermore, both the discrete-time Jensen inequality
and the lower bound lemma are adopted to handle the
summation terms. As in [34], it is easy to see that the lower
bound theorem can achieve better results than those based on
the Jensen inequality for the stability analysis of the delayed
systems. Therefore, we revisit the stability analysis problem
for GRNs with time-varying delays and the stochastic distur-
bances by fully taking the lower bound lemma, the discrete-
time Jensen inequality, and the free-weightingmatrixmethod
into account and propose an improved stability criterionwith
less conservatism compared with the results in [20, 21]. The
main contributions of this paper are highlighted as follows: (1)
both the discrete-time Jensen inequality and the well-known
reciprocally convex combination approach are adopted to
handle the triple summation terms; hence more information
of the time delays is reflected in the main results; and (2) a
new sufficient condition with less conservatism is given for
the considered discrete delayed GRNs in terms of the LMI

method. Finally, two numerical examples are included to
show the effectiveness of the proposed method.

Notations. For anymatrix𝐴,𝐴 > 0means that𝐴 is symmetric
positive definite.𝐸[⋅] stands for themathematical expectation
operator. The superscript 𝑇 represents the transpose of the
matrix. 𝐼 represents the identity matrix with appropriate
dimensions. (℧,F,P) is a probability space, ℧ is the sample
space,F is the𝜎-algebra of subsets of the sample space, andP
is the probability measure onF. For simplicity, in symmetric
block matrices, we often use ∗ to represent the term that is
induced by symmetry.

2. Model Description and Preliminaries

Consider the following discrete-time GRNs with time-
varying delays, 𝑛mRNAs, and 𝑛 proteins which are described
by the difference equations:

𝑀
𝑖
(𝑘 + 1) = 𝑒

−𝑎𝑖ℎ𝑀
𝑖
(𝑘)

+ 𝜙
𝑖
(ℎ) [

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑃
𝑗
(𝑘 − 𝜏 (𝑘))) + 𝑊

𝑖

]

]

,

𝑃
𝑖
(𝑘 + 1) = 𝑒

−𝑐𝑖ℎ𝑃
𝑖
(𝑘) + 𝜑

𝑖
(ℎ) [𝑑

𝑖
𝑀
𝑖
(𝑘 − 𝑑 (𝑘))] ,

(1)

where 𝑀
𝑖
(𝑘) ∈ R and 𝑃

𝑖
(𝑘) ∈ R (𝑖 = 1, 2, . . . , 𝑛) are the

concentrations of mRNA and protein of the 𝑖th node,
respectively. ℎ is a positive real number denoting a uniform
discretionary step size, and 𝑎

𝑖
> 0 and 𝑐

𝑖
> 0 are the

degradation rates of mRNA and protein, respectively. 𝑑
𝑖
is

the translation rate, and 𝜏(𝑘) > 0 and 𝑑(𝑘) > 0 are the time-
varying delays denoting the feedback regulation delay and the
translation delay satisfying 0 < 𝜏

𝑚
≤ 𝜏(𝑘) ≤ 𝜏

𝑀
and 0 <

𝑑
𝑚

≤ 𝑑(𝑘) ≤ 𝑑
𝑀
. Let 𝑊

𝑖
= ∑
𝑗∈N𝑖

𝜐
𝑖𝑗
, where 𝜐

𝑖𝑗
is a bounded

constant and denotes the dimensionless transcriptional rate
of transcription factor 𝑗 to 𝑖, and N

𝑖
is the set of all 𝑗 which

is a repressor of gene 𝑖. Moreover, 𝜙
𝑖
(ℎ) = (1 − 𝑒

−𝑎𝑖ℎ)/𝑎
𝑖
and

𝜑
𝑖
(ℎ) = (1−𝑒

−𝑐𝑖ℎ)/𝑐
𝑖
. Obviously, we can see that 𝜙

𝑖
(ℎ) > 0 and

𝜑
𝑖
(ℎ) > 0 hold.The coupling coefficients 𝑏

𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛)

are defined as follows:

𝑏
𝑖𝑗

=

{{{{

{{{{

{

𝜐
𝑖𝑗

if transcription factor 𝑗 is an activator of gene 𝑖,

0 if there is no link from node 𝑗 to 𝑖,

−𝜐
𝑖𝑗

if transcription factor 𝑗 is an repressor of gene 𝑖.

(2)

In addition, the nonlinear function 𝑓
𝑗
(⋅) ∈ R represents the

feedback regulation of the protein on the transcription. It
is a monotonic function in the Hill form; that is, 𝑓

𝑗
(𝑥) =

(𝑥/𝛽
𝑗
)
𝐻𝑗/(1 + (𝑥/𝛽

𝑗
)
𝐻𝑗), where 𝐻

𝑗
is the Hill coefficient and

𝛽
𝑗
is a positive constant.
Next, rewrite system (1) as the following compact form:

𝑀(𝑘 + 1) = 𝐴𝑀(𝑘) + 𝐵𝑓 (𝑃 (𝑘 − 𝜏 (𝑘))) + 𝑉,

𝑃 (𝑘 + 1) = 𝐶𝑃 (𝑘) + 𝐷𝑀(𝑘 − 𝑑 (𝑘)) ,

(3)
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where

𝑀(𝑘) = [𝑀
1
(𝑘) ,𝑀

2
(𝑘) , . . . ,𝑀

𝑛
(𝑘)]
𝑇

,

𝑃 (𝑘) = [𝑃
1
(𝑘) , 𝑃

2
(𝑘) , . . . , 𝑃

𝑛
(𝑘)]
𝑇

,

𝑉 = [𝜙
1
(ℎ)𝑊
1
, 𝜙
2
(ℎ)𝑊
2
, . . . , 𝜙

𝑛
(ℎ)𝑊
𝑛
]
𝑇

,

𝑓 (𝑃 (𝑘 − 𝜏 (𝑘))) = [𝑓
1
(𝑃
1
(𝑘 − 𝜏 (𝑘))) ,

𝑓
2
(𝑃
2
(𝑘 − 𝜏 (𝑘))) , . . . , 𝑓

𝑛
(𝑃
𝑛
(𝑘 − 𝜏 (𝑘)))]

𝑇

,

𝐴 = diag {𝑒
−𝑎1ℎ, 𝑒

−𝑎2ℎ, . . . , 𝑒
−𝑎𝑛ℎ} ,

𝐶 = diag {𝑒
−𝑐1ℎ, 𝑒
−𝑐2ℎ, . . . , 𝑒

−𝑐𝑛ℎ} ,

𝐷 = diag {𝜑
1
(ℎ) 𝑑
1
, 𝜑
2
(ℎ) 𝑑
2
, . . . , 𝜑

𝑛
(ℎ) 𝑑
𝑛
} ,

𝐵 = diag(

𝜙
1
(ℎ) 𝑏
11

𝜙
1
(ℎ) 𝑏
12

⋅ ⋅ ⋅ 𝜙
1
(ℎ) 𝑏
1𝑛

𝜙
2
(ℎ) 𝑏
21

𝜙
2
(ℎ) 𝑏
22

⋅ ⋅ ⋅ 𝜙
2
(ℎ) 𝑏
2𝑛

.

.

.
.
.
.

.

.

.
.
.
.

𝜙
𝑛
(ℎ) 𝑏
𝑛1

𝜙
𝑛
(ℎ) 𝑏
𝑛2

⋅ ⋅ ⋅ 𝜙
𝑛
(ℎ) 𝑏
𝑛𝑛

).

(4)

Let [𝑀
∗
𝑇

, 𝑃
∗
𝑇

] = [𝑀
∗

1
,𝑀
∗

2
, . . . ,𝑀

∗

𝑛
, 𝑃
∗

1
, 𝑃
∗

2
, . . . , 𝑃

∗

𝑛
] be

an equilibrium point of system (3). Then, it follows that

𝑀
∗

= 𝐴𝑀
∗

+ 𝐵𝑓 (𝑃
∗

) + 𝑉,

𝑃
∗

= 𝐶𝑃
∗

+ 𝐷𝑀
∗

.

(5)

Subsequently, we shift the equilibrium point [𝑀
∗
𝑇

, 𝑃
∗
𝑇

] of
system (3) to the origin point through the transformations
𝑥(𝑘) = 𝑀(𝑘) − 𝑀

∗, 𝑦(𝑘) = 𝑃(𝑘) − 𝑃
∗. Then, system (3) can

be transformed into the following form:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑔 (𝑦 (𝑘 − 𝜏 (𝑘))) ,

𝑦 (𝑘 + 1) = 𝐶𝑦 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑 (𝑘)) ,

(6)

where 𝑔(𝑦(𝑘)) = 𝑓(𝑦(𝑘) + 𝑃
∗

) − 𝑓(𝑃
∗

).

When the stochastic perturbations are taken into account,
system (6) becomes

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑔 (𝑦 (𝑘 − 𝜏 (𝑘)))

+ 𝜎 [𝑥 (𝑘) , 𝑥 (𝑘 − 𝑑 (𝑘)) , 𝑦 (𝑘) , 𝑦 (𝑘 − 𝜏 (𝑘))] 𝜔 (𝑘) ,

𝑦 (𝑘 + 1) = 𝐶𝑦 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑 (𝑘)) ,

(7)

where 𝜔(𝑘) is a one-dimensional Gaussian white noise
sequence on a probability space (℧,F,P) with

E [𝜔 (𝑘)] = 0,

E [𝜔
2

(𝑘)] = 1,

E [𝜔 (𝑖) 𝜔 (𝑗)] = 0 (𝑖 ̸= 𝑗) .

(8)

The noise intensity matrix 𝜎[𝑥(𝑘), 𝑥(𝑘 − 𝑑(𝑘)), 𝑦(𝑘), 𝑦(𝑘 −

𝜏(𝑘))] satisfies

𝜎
𝑇

[𝑥 (𝑘) , 𝑥 (𝑘 − 𝑑 (𝑘)) , 𝑦 (𝑘) , 𝑦 (𝑘 − 𝜏 (𝑘))] 𝜔 (𝑘)

⋅ 𝜎 [𝑥 (𝑘) , 𝑥 (𝑘 − 𝑑 (𝑘)) , 𝑦 (𝑘) , 𝑦 (𝑘 − 𝜏 (𝑘))] 𝜔 (𝑘)

≤ 𝑥
𝑇

(𝑘)𝐻
1
𝑥 (𝑘) + 𝑥

𝑇

(𝑘 − 𝑑 (𝑘))𝐻
2
𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝑦
𝑇

(𝑘)𝐻
3
𝑦 (𝑘) + 𝑦

𝑇

(𝑘 − 𝑑 (𝑘))𝐻
4
𝑦 (𝑘 − 𝑑 (𝑘)) ,

(9)

where 𝐻
1
, 𝐻
2
, 𝐻
3
, and 𝐻

4
are known constant matrices with

appropriate dimensions.

Assumption 1. For 𝑖 = 1, 2, . . . , 𝑛 and any 𝑠
1
, 𝑠
2
∈ R with 𝑠

1
̸=

𝑠
2
, 𝑔
𝑖
(⋅) is a monotonically increasing function and satisfies

that

0 ≤
𝑔
𝑖
(𝑠
1
) − 𝑔
𝑖
(𝑠
2
)

𝑠
1
− 𝑠
2

≤ 𝑙
𝑖
, 𝑔
𝑖
(0) = 0, (10)

where 𝑙
𝑖
are known constants.

Remark 2. Assumption 1 has been commonly used in the
literature, for example, [11]. In fact, it is easy to check that the
left-hand side of (10) holds as long as 𝑔

𝑖
(⋅) is a monotonically

increasing function.

To end this section, we introduce the following lemmas
which will be frequently used in the derivation of the main
results.

Lemma 3 (see [26] (discrete-time Jensen inequality)). For
any 𝑍 > 0, two scalars 𝜏

𝑚
and 𝜏

𝑀
with 𝜏

𝑚
≤ 𝜏
𝑀
, and any

vector-valued function 𝜂(𝑖), it follows that

−

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏𝑀

𝜂
𝑇

(𝑖) 𝑍𝜂 (𝑖) ≤
−1

(𝜏
𝑀

− 𝜏
𝑚
)
(

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏𝑀

𝜂
𝑇

(𝑖))

⋅ 𝑍(

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏𝑀

𝜂 (𝑖)) ,

−

−𝜏𝑚−1

∑

𝑗=−𝜏𝑀

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

(𝑖) 𝑍𝜂 (𝑖)

≤
−2

(𝜏
𝑀

− 𝜏
𝑚
) (𝜏
𝑀

+ 𝜏
𝑚

+ 1)
(

−𝜏𝑚−1

∑

𝑗=−𝜏𝑀

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

(𝑖))

⋅ 𝑍(

−𝜏𝑚−1

∑

𝑗=−𝜏𝑀

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂 (𝑖)) .

(11)

Lemma 4 (see [34] (lower bounds theorem)). Let 𝑓
1
, 𝑓
2
,

. . . , 𝑓
𝑁

: R𝑚 → R have positive values in an open subset 𝐷

of R𝑚. Then, the reciprocally convex combination of 𝑓
𝑖
over 𝐷

satisfies

min
{𝛼𝑖|𝛼𝑖>0,∑𝑖

𝛼𝑖=1}

∑

𝑖

1

𝛼
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) + max
𝑔𝑖,𝑗(𝑡)

∑

𝑖 ̸=𝑗

𝑔
𝑖,𝑗

(𝑡) (12)
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with

{𝑔
𝑖,𝑗

: R
𝑚

→ R, 𝑔
𝑗,𝑖

(𝑡) ≜ 𝑔
𝑖,𝑗

(𝑡) , [

𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑖,𝑗

(𝑡) 𝑓
𝑗
(𝑡)

]

≥ 0} .

(13)

3. Main Results

In this section, a new Lyapunov-Krasovskii functional is
firstly constructed by taking some triple summation terms
into account. Subsequently, we give a new stability condi-
tion for the addressed GRNs with time-varying delays and
stochastic disturbances by using the combination of the lower
bound lemma, the discrete-time Jensen inequality, and the
free-weighting matrices method. It is worthwhile to mention
that the presented sufficient condition can be easily checked
by using the Matlab LMI toolbox.

Theorem 5. For given positive scalars 𝑑
𝑚
, 𝑑
𝑀
, 𝜏
𝑚
, and 𝜏

𝑀
, if

there exist scalar 𝜌 > 0, matrices 𝑃
1

> 0, 𝑃
2

> 0, 𝑅 > 0, 𝑍
𝑗
,

𝑀
𝑗

> 0 (𝑗 = 1, 2, 3, 4), 𝑄
𝑖
= (
𝑄𝑖1 𝑄𝑖2

∗ 𝑄𝑖3

) > 0 (𝑖 = 1, 2, . . . , 6),
positive diagonal matrices 𝑇

1
, 𝑇
2
, and matrices𝑁

𝑖
= (𝑁
𝑇

𝑖1
, 𝑁
𝑇

𝑖2
,

𝑁
𝑇

𝑖3
)
𝑇

(𝑖 = 1, 2), 𝑆
𝑖
≥ 0 (𝑖 = 1, 2, 3, 4) such that the following

LMIs hold:

𝑃
1
< 𝜌𝐼,

Ω = (Ω
𝑖,𝑗
)
22×22

< 0,

(14)

where

Ω
1,1

= 𝐴
𝑇

𝑃
1
𝐴 − 𝑃

1
+ (1 + 𝑑

2
) 𝑄
11

+ 𝑄
21

+ 𝑄
31

−
1

𝑑
𝑀

𝑍
1
−

𝑑
2

2

𝑑
3

𝑀
1
−

𝑑
2

𝑀

𝑑
4

𝑀
2

+ 𝑁
11

(𝐴 − 𝐼) + (𝐴 − 𝐼)
𝑇

𝑁
𝑇

11
+ 𝜌𝐻
1
,

Ω
1,2

= −
1

𝑑
𝑀

(𝑆
𝑇

1
− 𝑍
1
) + (𝐴 − 𝐼)

𝑇

𝑁
𝑇

12
,

Ω
1,4

=
1

𝑑
𝑀

𝑆
𝑇

1
,

Ω
1,5

= (1 + 𝑑
2
) 𝑄
12

+ 𝑄
22

+ 𝑄
32

− 𝑁
11

+ (𝐴 − 𝐼)
𝑇

𝑁
𝑇

13
,

Ω
1,18

= 𝑁
11
𝐵 + 𝐴

𝑇

𝑃
1
𝐵,

Ω
1,19

=
𝑑
2

𝑑
3

𝑀
1
,

Ω
1,20

=
𝑑
𝑀

𝑑
4

𝑀
2
,

Ω
2,2

= 𝐷
𝑇

𝑃
2
𝐷 + 𝜌𝐻

2
− 𝑄
11

−
1

𝑑
𝑀

(2𝑍
1
− 𝑆
1
− 𝑆
𝑇

1
)

−
1

𝑑
2

(2𝑍
2
− 𝑆
2
− 𝑆
𝑇

2
) ,

Ω
2,3

= −
1

𝑑
2

(𝑆
2
− 𝑍
2
) ,

Ω
2,4

= −
1

𝑑
𝑀

(−𝑍
1
+ 𝑆
𝑇

1
) −

1

𝑑
2

(−𝑍
2
+ 𝑆
2
) ,

Ω
2,5

= −𝑁
12
,

Ω
2,6

= −𝑄
12
,

Ω
2,9

= 𝐷
𝑇

𝑃
2
𝐶 + 𝐷

𝑇

𝑁
𝑇

21
,

Ω
2,10

= 𝐷
𝑇

𝑁
𝑇

22
,

Ω
2,13

= 𝐷
𝑇

𝑁
𝑇

23
,

Ω
2,18

= 𝑁
12
𝐵,

Ω
3,3

= −𝑄
21

−
1

𝑑
2

𝑍
2
,

Ω
3,4

=
1

𝑑
2

𝑆
𝑇

2
,

Ω
3,17

= −𝑄
22
,

Ω
4,4

= −𝑄
31

−
1

𝑑
𝑀

𝑍
1
−

1

𝑑
2

𝑍
2
,

Ω
4,8

= −𝑄
32
,

Ω
5,5

= (1 + 𝑑
2
) 𝑄
13

+ 𝑄
23

+ 𝑄
33

+ 𝑑
𝑀

𝑍
1
+ 𝑑
2
𝑍
2

+ 𝑑
3
𝑀
1
+ 𝑑
4
𝑀
2
− 𝑁
13

− 𝑁
𝑇

13
,

Ω
5,18

= 𝑁
13
𝐵,

Ω
6,6

= −𝑄
13
,

Ω
7,7

= −𝑄
23
,

Ω
8,8

= −𝑄
33
,

Ω
9,9

= 𝐶
𝑇

𝑃
2
𝐶 − 𝑃
2
+ 𝜌𝐻
3
+ (1 + 𝜏

2
) 𝑄
41

+ 𝑄
51

+ 𝑄
61

−
1

𝜏
𝑀

𝑍
3
−

𝜏
2

2

𝜏
3

𝑀
3
−

𝜏
2

𝑀

𝜏
4

𝑀
4

+ 𝑁
21

(𝐶 − 𝐼) + (𝐶 − 𝐼)
𝑇

𝑁
𝑇

21
,

Ω
9,10

= −
1

𝜏
𝑀

(𝑆
𝑇

3
− 𝑍
3
) + (𝐶 − 𝐼)

𝑇

𝑁
𝑇

22
,

Ω
9,12

=
1

𝜏
𝑀

𝑆
𝑇

3
,

Ω
9,13

= (1 + 𝜏
2
) 𝑄
42

+ 𝑄
52

+ 𝑄
62

− 𝑁
21

+ (𝐶 − 𝐼)
𝑇

𝑁
𝑇

23
,
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Ω
9,17

= 𝐿𝑇
1
,

Ω
9,21

=
𝜏
2

𝜏
3

𝑀
3
,

Ω
9,22

=
𝜏
𝑀

𝜏
4

𝑀
4
,

Ω
10,10

= −𝑄
41

+ 𝜌𝐻
4
−

1

𝜏
𝑀

(2𝑍
3
− 𝑆
3
− 𝑆
𝑇

3
)

−
1

𝜏
2

(2𝑍
4
− 𝑆
4
− 𝑆
𝑇

4
) ,

Ω
10,11

= −
1

𝜏
2

(𝑆
4
− 𝑍
4
) ,

Ω
10,12

= −
1

𝜏
𝑀

(−𝑍
3
+ 𝑆
𝑇

3
) −

1

𝜏
2

(−𝑍
4
+ 𝑆
4
) ,

Ω
10,13

= −𝑁
22
,

Ω
10,14

= −𝑄
42
,

Ω
10,18

= 𝐿𝑇
2
,

Ω
11,11

= −𝑄
51

−
1

𝜏
2

𝑍
4
,

Ω
11,12

=
1

𝜏
2

𝑆
𝑇

4
,

Ω
11,15

= −𝑄
52
,

Ω
12,12

= −𝑄
61

−
1

𝜏
𝑀

𝑍
3
−

1

𝜏
2

𝑍
4
,

Ω
12,16

= −𝑄
62
,

Ω
13,13

= (1 + 𝜏
2
) 𝑄
43

+ 𝑄
53

+ 𝑄
63

+ 𝜏
𝑀

𝑍
3
+ 𝜏
2
𝑍
4

+ 𝜏
3
𝑀
3
+ 𝜏
4
𝑀
4
− 𝑁
23

− 𝑁
𝑇

23
,

Ω
14,14

= −𝑄
43
,

Ω
15,15

= −𝑄
53
,

Ω
16,16

= −𝑄
63
,

Ω
17,17

= (1 + 𝜏
2
) 𝑅 − 𝑇

1
− 𝑇
𝑇

1
,

Ω
18,18

= 𝐵
𝑇

𝑃
1
𝐵 − 𝑅 − 𝑇

2
− 𝑇
𝑇

2
,

Ω
19,19

= −
1

𝑑
3

𝑀
1
,

Ω
20,20

= −
1

𝑑
4

𝑀
2
,

Ω
21,21

= −
1

𝜏
3

𝑀
3
,

Ω
22,22

= −
1

𝜏
4

𝑀
4
,

𝑑
2
= 𝑑
𝑀

− 𝑑
𝑚
,

𝑑
3
=

1

2
(𝑑
𝑀

− 𝑑
𝑚
) (𝑑
𝑀

+ 𝑑
𝑚

+ 1) ,

𝑑
4
=

1

2
𝑑
𝑀

(𝑑
𝑀

+ 1) ,

𝜏
2
= 𝜏
𝑀

− 𝜏
𝑚
,

𝜏
3
=

1

2
(𝜏
𝑀

− 𝜏
𝑚
) (𝜏
𝑀

+ 𝜏
𝑚

+ 1) ,

𝜏
4
=

1

2
𝜏
𝑀

(𝜏
𝑀

+ 1)

(15)

and the remaining terms are zero; then the considered system
(7) is mean square asymptotically stable.

Proof. Set

𝜆
1
(𝑘) = [

𝑥 (𝑘)

𝜂
1
(𝑘)

] ,

𝜆
2
(𝑘) = [

𝑦 (𝑘)

𝜂
2
(𝑘)

] ,

𝜂
1
(𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) ,

𝜂
2
(𝑘) = 𝑦 (𝑘 + 1) − 𝑦 (𝑘) .

(16)

Motivated by [26, 35], we construct the following Lyapunov-
Krasovskii functional for the discrete-time stochastic GRN
(7):

𝑉 (𝑘, 𝑥 (𝑘) , 𝑦 (𝑘)) =

6

∑

𝑖=1

𝑉
𝑖
(𝑘) , (17)

where

𝑉
1
(𝑘) = 𝑥

𝑇

(𝑘) 𝑃
1
𝑥 (𝑘) + 𝑦

𝑇

(𝑘) 𝑃
2
𝑦 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝜆
𝑇

1
(𝑖) 𝑄
1
𝜆
1
(𝑖) +

𝑘−1

∑

𝑖=𝑘−𝑑𝑚

𝜆
𝑇

1
(𝑖) 𝑄
2
𝜆
1
(𝑖)

+

𝑘−1

∑

𝑖=𝑘−𝑑𝑀

𝜆
𝑇

1
(𝑖) 𝑄
3
𝜆
1
(𝑖)

+

−𝑑𝑚

∑

𝑗=−𝑑𝑀+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝜆
𝑇

1
(𝑖) 𝑄
1
𝜆
1
(𝑖) ,
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𝑉
3
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝜏(𝑘)

𝜆
𝑇

2
(𝑖) 𝑄
4
𝜆
2
(𝑖) +

𝑘−1

∑

𝑖=𝑘−𝜏𝑚

𝜆
𝑇

2
(𝑖) 𝑄
5
𝜆
2
(𝑖)

+

𝑘−1

∑

𝑖=𝑘−𝜏𝑀

𝜆
𝑇

2
(𝑖) 𝑄
6
𝜆
2
(𝑖)

+

−𝜏𝑚

∑

𝑗=−𝜏𝑀+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝜆
𝑇

2
(𝑖) 𝑄
4
𝜆
2
(𝑖) ,

𝑉
4
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑔
𝑇

(𝑦 (𝑖)) 𝑅𝑔 (𝑦 (𝑖))

+

−𝜏𝑚

∑

𝑗=−𝜏𝑀+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑔
𝑇

(𝑦 (𝑖)) 𝑅𝑔 (𝑦 (𝑖)) ,

𝑉
5
(𝑘) =

−1

∑

𝑗=−𝑑𝑀

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

1
(𝑖) 𝑍
1
𝜂
1
(𝑖)

+

−𝑑𝑚−1

∑

𝑗=−𝑑𝑀

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

1
(𝑖) 𝑍
2
𝜂
1
(𝑖)

+

−1

∑

𝑗=−𝜏𝑀

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

2
(𝑖) 𝑍
3
𝜂
2
(𝑖)

+

−𝜏𝑚−1

∑

𝑗=−𝜏𝑀

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

2
(𝑖) 𝑍
4
𝜂
2
(𝑖) ,

𝑉
6
(𝑘) =

−𝑑𝑚−1

∑

𝑙=−𝑑𝑀

−1

∑

𝑗=𝑙

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

1
(𝑖)𝑀
1
𝜂
1
(𝑖)

+

−1

∑

𝑙=−𝑑𝑚

−1

∑

𝑗=𝑙

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

1
(𝑖)𝑀
2
𝜂
1
(𝑖)

+

−𝜏𝑚−1

∑

𝑙=−𝜏𝑀

−1

∑

𝑗=𝑙

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

2
(𝑖)𝑀
3
𝜂
2
(𝑖)

+

−1

∑

𝑙=−𝜏𝑚

−1

∑

𝑗=𝑙

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

2
(𝑖)𝑀
4
𝜂
2
(𝑖) .

(18)

Calculate the difference of 𝑉(𝑘) by defining Δ𝑉(𝑘) = 𝑉(𝑘 +

1) − 𝑉(𝑘) along the solutions of (7) and taking mathematical
expectation. It follows from Lemma 3 that

E [Δ𝑉
1
(𝑘)] = E [𝑉

1
(𝑘 + 1) − 𝑉

1
(𝑘)]

= E [𝑥
𝑇

(𝑘 + 1) 𝑃
1
𝑥 (𝑘 + 1) − 𝑥

𝑇

(𝑘) 𝑃
1
𝑥 (𝑘)

+𝑦
𝑇

(𝑘 + 1) 𝑃
2
𝑦 (𝑘 + 1) − 𝑦

𝑇

(𝑘) 𝑃
2
𝑦 (𝑘)]

≤ E [𝑥
𝑇

(𝑘) (𝐴
𝑇

𝑃
1
𝐴 − 𝑃

1
+ 𝜌𝐻
1
) 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘) 𝐴
𝑇

𝑃
1
𝐵𝑔 (𝑦 (𝑘 − 𝜏 (𝑘)))

+ 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) (𝐷
𝑇

𝑃
2
𝐷 + 𝜌𝐻

2
) 𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝑦
𝑇

(𝑘) (𝐶
𝑇

𝑃
2
𝐶 − 𝑃
2
+ 𝜌𝐻
3
) 𝑦 (𝑘)

+ 2𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃
2
𝐷𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝑦
𝑇

(𝑘 − 𝜏 (𝑘)) 𝜌𝐻
4
𝑦 (𝑘 − 𝜏 (𝑘))

+𝑔
𝑇

(𝑦 (𝑘 − 𝜏 (𝑘))) 𝐵
𝑇

𝑃
1
𝐵𝑔 (𝑦 (𝑘 − 𝜏 (𝑘)))] ,

E [Δ𝑉
2
(𝑘)] = E [𝑉

2
(𝑘 + 1) − 𝑉

2
(𝑘)]

≤ E[

[

𝜆
𝑇

1
(𝑘) (𝑄

1
+ 𝑄
2
+ 𝑄
3
) 𝜆
1
(𝑘)

− 𝜆
𝑇

1
(𝑘 − 𝑑 (𝑘)) 𝑄

1
𝜆
1
(𝑘 − 𝑑 (𝑘))

− 𝜆
𝑇

1
(𝑘 − 𝑑

𝑚
) 𝑄
2
𝜆
1
(𝑘 − 𝑑

𝑚
)

− 𝜆
𝑇

1
(𝑘 − 𝑑

𝑀
) 𝑄
3
𝜆
1
(𝑘 − 𝑑

𝑀
)

+

𝑘−𝑑𝑚

∑

𝑖=𝑘+1−𝑑𝑀

𝜆
𝑇

1
(𝑖) 𝑄
1
𝜆
1
(𝑖)]

]

+ E[

[

−𝑑𝑚

∑

𝑗=−𝑑𝑀+1

(

𝑘

∑

𝑖=𝑘+1+𝑗

𝜆
𝑇

1
(𝑖) 𝑄
1
𝜆
1
(𝑖)

−

𝑘−1

∑

𝑖=𝑘+𝑗

𝜆
𝑇

1
(𝑖) 𝑄
1
𝜆
1
(𝑖))]

]

≤ E[

[

𝑥
𝑇

(𝑘) (𝑄
11

+ 𝑄
21

+ 𝑄
31
) 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘) (𝑄
12

+ 𝑄
22

+ 𝑄
32
) 𝜂
1
(𝑘)

+ 𝜂
𝑇

1
(𝑘) (𝑄

13
+ 𝑄
23

+ 𝑄
33
) 𝜂
1
(𝑘)

− 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑄
11
𝑥 (𝑘 − 𝑑 (𝑘))

− 2𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝑄
12
𝜂
1
(𝑘 − 𝑑 (𝑘))

− 𝜂
𝑇

1
(𝑘 − 𝑑 (𝑘)) 𝑄

13
𝜂
1
(𝑘 − 𝑑 (𝑘))

− 𝑥
𝑇

(𝑘 − 𝑑
𝑚
) 𝑄
21
𝑥 (𝑘 − 𝑑

𝑚
)

− 2𝑥
𝑇

(𝑘 − 𝑑
𝑚
) 𝑄
22
𝜂
1
(𝑘 − 𝑑

𝑚
)

− 𝜂
𝑇

1
(𝑘 − 𝑑

𝑚
) 𝑄
23
𝜂
1
(𝑘 − 𝑑

𝑚
)

− 𝑥
𝑇

(𝑘 − 𝑑
𝑀

) 𝑄
31
𝑥 (𝑘 − 𝑑

𝑀
)
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− 2𝑥
𝑇

(𝑘 − 𝑑
𝑀

) 𝑄
32
𝜂
1
(𝑘 − 𝑑

𝑀
)

− 𝜂
𝑇

1
(𝑘 − 𝑑

𝑀
) 𝑄
33
𝜂
1
(𝑘 − 𝑑

𝑀
)

+

𝑘−𝑑𝑚

∑

𝑖=𝑘+1−𝑑𝑀

𝜆
𝑇

1
(𝑖) 𝑄
1
𝜆
1
(𝑖)

+ 𝑑
2
(𝑥
𝑇

(𝑘) 𝑄
11
𝑥 (𝑘) + 2𝑥

𝑇

(𝑘) 𝑄
12
𝜂
1
(𝑘)

+𝜂
𝑇

(𝑘) 𝑄
13
𝜂
1
(𝑘))

−

𝑘−𝑑𝑚

∑

𝑖=𝑘+1−𝑑𝑀

𝜆
𝑇

1
(𝑖) 𝑄
1
𝜆
1
(𝑖)]

]

,

E [Δ𝑉
3
(𝑘)] = E [𝑉

3
(𝑘 + 1) − 𝑉

3
(𝑘)]

≤ E[

[

𝑦
𝑇

(𝑘) (𝑄
41

+ 𝑄
51

+ 𝑄
61
) 𝑦 (𝑘)

+ 2𝑦
𝑇

(𝑘) (𝑄
42

+ 𝑄
52

+ 𝑄
62
) 𝜂
2
(𝑘)

+ 𝜂
𝑇

2
(𝑘) (𝑄

43
+ 𝑄
53

+ 𝑄
63
) 𝜂
2
(𝑘)

− 𝑦
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑄
41
𝑥 (𝑘 − 𝑑 (𝑘))

− 2𝑦
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑄
42
𝜂
2
(𝑘 − 𝜏 (𝑘))

− 𝜂
𝑇

2
(𝑘 − 𝜏 (𝑘)) 𝑄

43
𝜂
2
(𝑘 − 𝜏 (𝑘))

− 𝑦
𝑇

(𝑘 − 𝜏
𝑚
) 𝑄
51
𝑥 (𝑘 − 𝜏

𝑚
)

− 2𝑦
𝑇

(𝑘 − 𝜏
𝑚
) 𝑄
52
𝜂
2
(𝑘 − 𝜏

𝑚
)

− 𝜂
𝑇

2
(𝑘 − 𝜏

𝑚
) 𝑄
53
𝜂
2
(𝑘 − 𝜏

𝑚
)

− 𝑦
𝑇

(𝑘 − 𝜏
𝑀

) 𝑄
61
𝑥 (𝑘 − 𝜏

𝑀
)

− 2𝑦
𝑇

(𝑘 − 𝜏
𝑀

) 𝑄
62
𝜂
2
(𝑘 − 𝜏

𝑀
)

− 𝜂
𝑇

2
(𝑘 − 𝜏

𝑀
) 𝑄
63
𝜂
2
(𝑘 − 𝜏

𝑀
)

+

𝑘−𝜏𝑚

∑

𝑖=𝑘+1−𝜏𝑀

𝜆
𝑇

2
(𝑖) 𝑄
4
𝜆
2
(𝑖)

+ 𝜏
2
(𝑦
𝑇

(𝑘) 𝑄
41
𝑦 (𝑘)

+2𝑦
𝑇

(𝑘) 𝑄
42
𝜂
2
(𝑘) + 𝜂

𝑇

2
(𝑘) 𝑄
43
𝜂
2
(𝑘))

−

𝑘−𝜏𝑚

∑

𝑖=𝑘+1−𝜏𝑀

𝜆
𝑇

2
(𝑖) 𝑄
4
𝜆
2
(𝑖)]

]

,

E [Δ𝑉
4
(𝑘)] = E [𝑉

4
(𝑘 + 1) − 𝑉

4
(𝑘)]

≤ E [(1 + 𝜏
2
) 𝑔
𝑇

(𝑦 (𝑘)) 𝑅𝑔 (𝑦 (𝑘))

−𝑔
𝑇

(𝑦 (𝑘 − 𝜏 (𝑘))) 𝑅𝑔 (𝑦 (𝑘 − 𝜏 (𝑘)))] ,

E [Δ𝑉
5
(𝑘)] = E [𝑉

5
(𝑘 + 1) − 𝑉

5
(𝑘)]

= E[

[

−1

∑

𝑗=−𝑑𝑀

(

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

1
(𝑖) 𝑍
1
𝜂
1
(𝑖)

−

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

1
(𝑖) 𝑍
1
𝜂
1
(𝑖))

+

−𝑑𝑚−1

∑

𝑗=−𝑑𝑀

(

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

1
(𝑖) 𝑍
2
𝜂
1
(𝑖)

−

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

1
(𝑖) 𝑍
2
𝜂
1
(𝑖))

+

−1

∑

𝑗=−𝜏𝑀

(

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

2
(𝑖) 𝑍
3
𝜂
2
(𝑖)

−

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

2
(𝑖) 𝑍
3
𝜂
2
(𝑖))

+

−𝜏𝑚−1

∑

𝑗=−𝜏𝑀

(

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

2
(𝑖) 𝑍
4
𝜂
2
(𝑖)

−

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

2
(𝑖) 𝑍
4
𝜂
2
(𝑖))]

]

= E[

[

𝑑
𝑀

𝜂
𝑇

1
(𝑘) 𝑍
1
𝜂
1
(𝑘)

−

𝑘−1

∑

𝑖=𝑘−𝑑𝑀

𝜂
𝑇

1
(𝑖) 𝑍
1
𝜂
1
(𝑖)

+ 𝑑
2
𝜂
𝑇

1
(𝑘) 𝑍
2
𝜂
1
(𝑘)

−

𝑘−𝑑𝑚−1

∑

𝑖=𝑘−𝑑𝑀

𝜂
𝑇

1
(𝑖) 𝑍
2
𝜂
1
(𝑖)

+ 𝜏
𝑀

𝜂
𝑇

2
(𝑘) 𝑍
3
𝜂
2
(𝑘)

−

𝑘−1

∑

𝑖=𝑘−𝜏𝑀

𝜂
𝑇

2
(𝑖) 𝑍
3
𝜂
2
(𝑖)

+ 𝜏
2
𝜂
𝑇

2
(𝑘) 𝑍
4
𝜂
2
(𝑘)

−

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏𝑀

𝜂
𝑇

2
(𝑖) 𝑍
4
𝜂
2
(𝑖)]

]

,
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E [Δ𝑉
6
(𝑘)] = E [𝑉

6
(𝑘 + 1) − 𝑉

6
(𝑘)]

= E[

[

−𝑑𝑚−1

∑

𝑙=−𝑑𝑀

−1

∑

𝑗=𝑙

(

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

1
(𝑖)𝑀
1
𝜂
1
(𝑖)

−

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

1
(𝑖)𝑀
1
𝜂
1
(𝑖))

+

−1

∑

𝑙=−𝑑𝑀

−1

∑

𝑗=𝑙

(

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

1
(𝑖)𝑀
2
𝜂
1
(𝑖)

−

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

1
(𝑖)𝑀
2
𝜂
1
(𝑖))

+

−𝜏𝑚−1

∑

𝑙=−𝜏𝑀

−1

∑

𝑗=𝑙

(

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

2
(𝑖)𝑀
3
𝜂
2
(𝑖)

−

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

2
(𝑖)𝑀
3
𝜂
2
(𝑖))

+

−1

∑

𝑙=−𝜏𝑀

−1

∑

𝑗=𝑙

(

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

2
(𝑖)𝑀
4
𝜂
2
(𝑖)

−

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

2
(𝑖)𝑀
4
𝜂
2
(𝑖))]

]

= E[

[

𝑑
3
𝜂
𝑇

1
(𝑘)𝑀

1
𝜂
1
(𝑘)

−

−𝑑𝑚−1

∑

𝑙=−𝑑𝑀

𝑘−1

∑

𝑗=𝑘+𝑙

𝜂
𝑇

1
(𝑗)𝑀

1
𝜂
1
(𝑗) + 𝑑

4
𝜂
𝑇

1
(𝑘)𝑀

2
𝜂
1
(𝑘)

−

−1

∑

𝑙=−𝑑𝑀

𝑘−1

∑

𝑗=𝑘+𝑙

𝜂
𝑇

1
(𝑗)𝑀

2
𝜂
1
(𝑗)]

]

+ E[

[

𝜏
3
𝜂
𝑇

2
(𝑘)𝑀

3
𝜂
2
(𝑘)

−

−𝜏𝑚−1

∑

𝑙=−𝜏𝑀

𝑘−1

∑

𝑗=𝑘+𝑙

𝜂
𝑇

2
(𝑗)𝑀

3
𝜂
2
(𝑗) + 𝜏

4
𝜂
𝑇

2
(𝑘)𝑀

4
𝜂
2
(𝑘)

−

−1

∑

𝑙=−𝜏𝑀

𝑘−1

∑

𝑗=𝑘+𝑙

𝜂
𝑇

2
(𝑗)𝑀

4
𝜂
2
(𝑗)]

]

.

(19)

For any positive-definite matrices 𝑍
𝑗
and any matrices

𝑆
𝑖

≥ 0 with [
𝑍𝑗 𝑆𝑖

𝑆
𝑇

𝑖
𝑍𝑗

] ≥ 0 (𝑖, 𝑗 = 1, 2, 3, 4), it follows from
Lemmas 3 and 4 that

−

𝑘−1

∑

𝑖=𝑘−𝑑𝑀

𝜂
𝑇

1
(𝑖) 𝑍
1
𝜂
1
(𝑖) = −

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑𝑀

𝜂
𝑇

1
(𝑖) 𝑍
1
𝜂
1
(𝑖)

−

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝜂
𝑇

1
(𝑖) 𝑍
1
𝜂
1
(𝑖)

≤ −
1

𝑑
𝑀

[

[

𝑑
𝑀

𝑑
𝑀

− 𝑑 (𝑘)
(

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑𝑀

𝜂
1
(𝑖))

𝑇

⋅ 𝑍
1
(

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑𝑀

𝜂
1
(𝑖)) +

𝑑
𝑀

𝑑 (𝑘)
(

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝜂
1
(𝑖))

𝑇

⋅ 𝑍
1
(

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝜂
1
(𝑖))]

]

= −
1

𝑑
𝑀

[
𝑑
𝑀

𝑑
𝑀

− 𝑑 (𝑘)
(𝑥 (𝑘 − 𝑑 (𝑘))

− 𝑥 (𝑘 − 𝑑
𝑀

))
𝑇

𝑍
1
(𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑

𝑀
))

+
𝑑
𝑀

𝑑 (𝑘)
(𝑥 (𝑘) − 𝑥 (𝑘 − 𝑑 (𝑘)))

𝑇

𝑍
1
(𝑥 (𝑘)

− 𝑥 (𝑘 − 𝑑 (𝑘)))]

≤ −
1

𝑑
𝑀

[

[

(

𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
𝑀

)

𝑥 (𝑘) − 𝑥 (𝑘 − 𝑑 (𝑘))
)

𝑇

⋅ (

𝑍
1

𝑆
1

𝑆
𝑇

1
𝑍
1

)(

𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
𝑀

)

𝑥 (𝑘) − 𝑥 (𝑘 − 𝑑 (𝑘))
)]

]

.

(20)

Similarly, we have

−

𝑘−𝑑𝑚−1

∑

𝑖=𝑘−𝑑𝑀

𝜂
𝑇

1
(𝑖) 𝑍
2
𝜂
1
(𝑖)

≤ −
1

𝑑
2

[

[

(

𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
𝑀

)

𝑥 (𝑘 − 𝑑
𝑚
) − 𝑥 (𝑘 − 𝑑 (𝑘))

)

𝑇

⋅ (

𝑍
2

𝑆
2

𝑆
𝑇

2
𝑍
2

)(

𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
𝑀

)

𝑥 (𝑘 − 𝑑
𝑚
) − 𝑥 (𝑘 − 𝑑 (𝑘))

)]

]

,
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−

𝑘−1

∑

𝑖=𝑘−𝜏𝑀

𝜂
𝑇

2
(𝑖) 𝑍
3
𝜂
2
(𝑖)

≤ −
1

𝜏
𝑀

[

[

(

𝑦 (𝑘 − 𝜏 (𝑘)) − 𝑦 (𝑘 − 𝜏
𝑀

)

𝑦 (𝑘) − 𝑦 (𝑘 − 𝜏 (𝑘))
)

𝑇

⋅ (

𝑍
3

𝑆
3

𝑆
𝑇

3
𝑍
3

)(

𝑦 (𝑘 − 𝜏 (𝑘)) − 𝑦 (𝑘 − 𝜏
𝑀

)

𝑦 (𝑘) − 𝑦 (𝑘 − 𝜏 (𝑘))
)]

]

,

−

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏𝑀

𝜂
𝑇

2
(𝑖) 𝑍
4
𝜂
2
(𝑖)

≤ −
1

𝜏
2

[

[

(

𝑦 (𝑘 − 𝜏 (𝑘)) − 𝑦 (𝑘 − 𝜏
𝑀

)

𝑦 (𝑘 − 𝜏
𝑚
) − 𝑦 (𝑘 − 𝜏 (𝑘))

)

𝑇

⋅ (

𝑍
4

𝑆
4

𝑆
𝑇

4
𝑍
4

)(

𝑦 (𝑘 − 𝜏 (𝑘)) − 𝑦 (𝑘 − 𝜏
𝑀

)

𝑦 (𝑘 − 𝜏
𝑚
) − 𝑦 (𝑘 − 𝜏 (𝑘))

)]

]

,

(21)

where 𝑑
2
and 𝜏
2
are defined inTheorem 5.

By applying Lemma 3, for 𝑀
𝑗

> 0 (𝑗 = 1, 2, 3, 4), the
following inequalities can be established:

−

−𝑑𝑚−1

∑

𝑙=−𝑑𝑀

𝑘−1

∑

𝑗=𝑘+𝑙

𝜂
𝑇

1
(𝑗)𝑀

1
𝜂
1
(𝑗)

≤ −
1

𝑑
3

[

[

−𝑑𝑚−1

∑

𝑙=−𝑑𝑀

𝑘−1

∑

𝑗=𝑘+𝑙

𝜂
𝑇

1
(𝑗)𝑀

1

−𝑑𝑚−1

∑

𝑙=−𝑑𝑀

𝑘−1

∑

𝑗=𝑘+𝑙

𝜂
1
(𝑗)]

]

≤ −
1

𝑑
3

[

[

𝑑
2
𝑥 (𝑘) −

𝑘−𝑑𝑚−1

∑

𝑖=𝑘−𝑑𝑀

𝑥 (𝑖)]

]

𝑇

⋅ 𝑀
1

[

[

𝑑
2
𝑥 (𝑘) −

𝑘−𝑑𝑚−1

∑

𝑖=𝑘−𝑑𝑀

𝑥 (𝑖)]

]

,

−

−1

∑

𝑙=−𝑑𝑀

𝑘−1

∑

𝑗=𝑘+𝑙

𝜂
𝑇

1
(𝑗)𝑀

2
𝜂
1
(𝑗)

≤ −
1

𝑑
4

[

[

𝑑
𝑀

𝑥 (𝑘) −

𝑘−1

∑

𝑖=𝑘−𝑑𝑀

𝑥 (𝑖)]

]

𝑇

⋅ 𝑀
2

[

[

𝑑
𝑀

𝑥 (𝑘) −

𝑘−1

∑

𝑖=𝑘−𝑑𝑀

𝑥 (𝑖)]

]

,

−

−𝜏𝑚−1

∑

𝑙=−𝜏𝑀

𝑘−1

∑

𝑗=𝑘+𝑙

𝜂
𝑇

2
(𝑗)𝑀

3
𝜂
2
(𝑗)

≤ −
1

𝜏
3

[

[

𝜏
2
𝑦 (𝑘) −

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏𝑀

𝑦 (𝑖)]

]

𝑇

⋅ 𝑀
3

[

[

𝜏
2
𝑦 (𝑘) −

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏𝑀

𝑦 (𝑖)]

]

,

−

−1

∑

𝑙=−𝜏𝑀

𝑘−1

∑

𝑗=𝑘+𝑙

𝜂
𝑇

2
(𝑗)𝑀

4
𝜂
2
(𝑗)

≤ −
1

𝜏
4

[

[

𝜏
𝑀

𝑦 (𝑘) −

𝑘−1

∑

𝑖=𝑘−𝜏𝑀

𝑦 (𝑖)]

]

𝑇

⋅ 𝑀
4

[

[

𝜏
𝑀

𝑦 (𝑘) −

𝑘−1

∑

𝑖=𝑘−𝜏𝑀

𝑦 (𝑖)]

]

,

(22)
where 𝑑

3
, 𝑑
4
, 𝜏
3
, and 𝜏

4
are defined in Theorem 5. From

Assumption 1, for diagonal matrices 𝑇
1
, 𝑇
2
> 0 and a known

matrix 𝐿 = diag{𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
} > 0, it is not difficult to see that

the following inequalities

2𝑔
𝑇

(𝑦 (𝑘)) 𝑇
1
𝑔 (𝑦 (𝑘)) − 2𝑦

𝑇

(𝑘) 𝐿𝑇
1
𝑔 (𝑦 (𝑘)) ≤ 0,

2𝑔
𝑇

(𝑦 (𝑘 − 𝜏 (𝑘))) 𝑇
2
𝑔 (𝑦 (𝑘 − 𝜏 (𝑘)))

− 2𝑦
𝑇

(𝑘 − 𝜏 (𝑘)) 𝐿𝑇
2
𝑔 (𝑦 (𝑘 − 𝜏 (𝑘))) ≤ 0

(23)

hold.
In addition, we get

E [𝜂
1
(𝑘)] = E [𝑥 (𝑘 + 1) − 𝑥 (𝑘)]

= E [(𝐴 − 𝐼) 𝑥 (𝑘) + 𝐵𝑔 (𝑦 (𝑘 − 𝜏 (𝑘)))] ,

E [𝜂
2
(𝑘)] = E [𝑦 (𝑘 + 1) − 𝑦 (𝑘)]

= E [(𝐶 − 𝐼) 𝑦 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑 (𝑘))] .

(24)

Then, for any matrices 𝑁
1

= [𝑁
𝑇

11
, 𝑁
𝑇

12
, 𝑁
𝑇

13
]
𝑇 and 𝑁

2
=

[𝑁
𝑇

21
, 𝑁
𝑇

22
, 𝑁
𝑇

23
]
𝑇, we have

E [2𝛼
1
(𝑘)

⋅ 𝑁
1
((𝐴 − 𝐼) 𝑥 (𝑘) + 𝐵𝑔 (𝑦 (𝑘 − 𝜏 (𝑘))) − 𝜂

1
(𝑘))]

= 0,

E [2𝛼
2
(𝑘)

⋅ 𝑁
2
((𝐶 − 𝐼) 𝑦 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑 (𝑘)) − 𝜂

2
(𝑘))] = 0,

(25)

where
𝛼
𝑇

1
(𝑘) = (𝑥

𝑇

(𝑘) , 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) , 𝜂
𝑇

1
(𝑘)) ,

𝛼
𝑇

2
(𝑘) = (𝑦

𝑇

(𝑘) , 𝑦
𝑇

(𝑘 − 𝜏 (𝑘)) , 𝜂
𝑇

2
(𝑘)) .

(26)
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Now, combining (19), (20), (21), (22), (23), and (25), we obtain
the following inequality:

E [Δ𝑉 (𝑘)] ≤ E [𝛼
𝑇

(𝑘)Ω𝛼 (𝑘)] (27)

with

𝛼
𝑇

(𝑘) = (𝑥
𝑇

(𝑘) , 𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) , 𝑥
𝑇

(𝑘 − 𝑑
𝑚
) ,

𝑥
𝑇

(𝑘 − 𝑑
𝑀

) , 𝜂
𝑇

1
(𝑘) , 𝜂

𝑇

1
(𝑘 − 𝑑 (𝑘)) , 𝜂

𝑇

1
(𝑘 − 𝑑

𝑚
) ,

𝜂
𝑇

1
(𝑘 − 𝑑

𝑀
) , 𝑦
𝑇

(𝑘) , 𝑦
𝑇

(𝑘 − 𝜏 (𝑘)) , 𝑦
𝑇

(𝑘 − 𝜏
𝑚
) ,

𝑦
𝑇

(𝑘 − 𝜏
𝑀

) , 𝜂
𝑇

2
(𝑘) , 𝜂

𝑇

2
(𝑘 − 𝜏 (𝑘)) , 𝜂

𝑇

2
(𝑘 − 𝜏

𝑚
) ,

𝜂
𝑇

2
(𝑘 − 𝜏

𝑀
) , 𝑔
𝑇

(𝑦 (𝑘)) , 𝑔
𝑇

(𝑦 (𝑘 − 𝜏 (𝑘))) ,

𝑘−𝑑𝑚−1

∑

𝑖=𝑘−𝑑𝑀

𝑥
𝑇

(𝑖) ,

𝑘−1

∑

𝑖=𝑘−𝑑𝑀

𝑥
𝑇

(𝑖) ,

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏𝑀

𝑦
𝑇

(𝑖) ,

𝑘−1

∑

𝑖=𝑘−𝜏𝑀

𝑦
𝑇

(𝑖)) .

(28)

According to LMIs (14), one has Ω < 0. Hence, we have
E[Δ𝑉(𝑘)] ≤ 0. Thus, the considered stochastic GRN is
asymptotically stable in mean square sense, which ends the
proof of this theorem.

Remark 6. Note that a novel Lyapunov-Krasovskii functional
has been proposed in [26] including some triple summation
terms, where some new yet effective robust stabilization and
𝐻
∞

control schemes have been given for discrete uncertain
GRNs with time-varying delays and disturbances. In order to
further reduce the conservatism induced by the time delays,
it is worth mentioning that a new Lyapunov-Krasovskii
functional has been constructed as in Theorem 5 motivated
by the efficient results in [26, 35]. Moreover, the discrete-
time Jensen inequality lemma has been used in Theorem 5
to deal with the summation terms (20) and (21) as in [26],
where more information of the time-varying delays has been
utilized in our main results. In addition, as pointed out in
[34], by using the lower bounds theorem and the discrete-
time Jensen inequality, less conservative stability criteria
can be obtained compared to the one where the discrete-
time Jensen inequality is used only. Hence, based on the
combination of the discrete-time Jensen inequality, the lower
bounds theorem, and the free-weighting matrix approach,
some useful information of the time delays is considered and
then a new stability condition is proposed for the addressed
delayed GRNs and the conservatism from the time-varying
delays is further reduced.

Remark 7. The standard LMI system has a polynomial-time
complexity, which is bounded by 𝑂(𝑀𝑁), where 𝑀 is the
total row size of the LMI system and 𝑁 is the total number
of scalar decision variables. For example, let us consider
the proposed stability criterion for the addressed GRNs (as
described in Theorem 5); we have 𝑀 = 22𝑛 and 𝑁 = 1 +

11𝑛(𝑛+1)/2+6(𝑛(𝑛+1)+𝑛
2

)+2𝑛+6𝑛
2

+4𝑛
2

= (1/2)(55𝑛
2

+

27𝑛 + 2). Therefore, the computational complexity of the
LMI-based stability criterion can be represented as𝑂(605𝑛

3

+

297𝑛
2

+ 22𝑛).

4. Numerical Simulations

In this section, we provide two numerical examples to
illustrate the effectiveness and correctness of themain results.

Example 1. Consider the five-node GRN (7) with its param-
eters borrowed from [21]:

𝐴 = 𝐶 = diag {0.8, 0.7, 0.6, 0.4, 0.2} ,

𝐷 = 0.1𝐼,

𝐻
1
= 𝐻
2
= 𝐻
3
= 𝐻
4
= 𝐼,

𝐵 = 0.5 ×
(
(

(

0 −1 1 0 0

−1 0 0 1 1

0 1 0 0 0

1 −1 0 0 0

0 0 0 1 0

)
)

)

.

(29)

Letting the nonlinear regulatory function be 𝑔(𝑦) =

𝑦
2

/(1 + 𝑦
2

), then it is easy to see

𝐿 = diag {0.65, 0.65, 0.65, 0.65, 0.65} . (30)

Moreover, assume 𝑑
𝑚

= 4, 𝑑
𝑀

= 6, 𝜏
𝑚

= 1, 𝜏
𝑀

= 3. By
using the LMIs control toolbox in Matlab to solve the LMIs
in Theorem 5, we can see that they are feasible with parts of
the obtained parameters as follows:

𝑃
1
=

(
(

(

18.7632 −2.1967 9.9367 −3.0025 0.6567

−2.1967 16.4957 2.6272 8.6953 −5.5338

9.9367 2.6272 38.3963 10.0564 −0.9914

−3.0025 8.6953 10.0564 25.6204 −5.6826

0.6567 −5.5338 −0.9914 −5.6826 48.6707

)
)

)

,

𝑃
2

=
(
(

(

47.7466 −5.0327 4.1261 −9.5940 −7.6801

−5.0327 64.7246 −15.8688 2.8260 −1.5562

4.1261 −15.8688 74.5614 −0.0815 −2.7697

−9.5940 2.8260 −0.0815 78.7523 11.4312

−7.6801 −1.5562 −2.7697 11.4312 79.3701

)
)

)

,

𝑅 =
(
(

(

0.7715 −0.0504 0.1792 −0.1834 −0.1930

−0.0504 1.6419 −0.1470 0.1093 −0.1013

0.1792 −0.1470 2.4800 0.0101 −0.0965

−0.1834 0.1093 0.0101 2.7531 0.2216

−0.1930 −0.1013 −0.0965 0.2216 2.5567

)
)

)

.

(31)

Therefore, according to Theorem 5, GRN (7) with time-
varying delays and stochastic disturbances is mean square
asymptotically stable. Based on the parameter mentioned
above, the trajectories of the mRNA and protein concentra-
tions are plotted in Figures 1 and 2, respectively.
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Figure 1: The trajectories of the mRNA concentrations.
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Figure 2: The trajectories of the protein concentrations.

Example 2. Consider the five-node GRN (7) with the other
case:

𝐴 = 𝐶 = diag {0.8, 0.7, 0.6, 0.4, 0.2} ,

𝐻
1
= 𝐻
2
= 0,

𝐻
3
= 𝐻
4
= 𝐼;

(32)

the delay𝑑(𝑘) is unknown, and the other parameters are listed
as in Example 1. According to the different lower bounds of
time delays, the delays upper bounds for guaranteeing the
asymptotical stability of the addressed GRN are obtained
as in Table 1 by using Theorem 5, Theorem 3 in [20], and

Table 1: Admissible upper bound 𝑑
𝑀
with different 𝑑

𝑚
.

𝑑
𝑚

2 4 6 8 10 12
Theorem 3 in [20] 4 6 8 9 11 14
Theorem 1 in [21] 9 11 13 15 17 19
Theorem 5 14 15 17 19 21 23

Theorem 1 in [21], respectively. It should be pointed out that
Theorem 1 in [20] is infeasible when setting𝐻

3
= 𝐻
4
= 0, the

feedback regulation delay 𝜏(𝑘), and the translation delay 𝑑(𝑘)

satisfying 2 ≤ 𝜏(𝑘) ≤ 20 and 1 ≤ 𝑑(𝑘) ≤ 22, respectively;
however, it is easy to see that system (7) is asymptotically
stable by using Theorem 5 proposed in this paper. Therefore,
the newly proposed result has less conservatism than the
results in [20, 21].

5. Conclusion

In the paper, we have investigated the stability analysis prob-
lem for discrete-timeGRNswith interval time-varying delays
and stochastic disturbances. By utilizing a new augmented
Lyapunov-Krasovskii functional which contains some triple
summation terms, the discrete-time Jensen inequality, and
the lower bound lemma, an improved delay-dependent sta-
bility criterion has been given in terms of LMIs to guaran-
tee the mean square asymptotic stability for the addressed
discrete-time GRNs. The effectiveness and advantage of the
proposed method have been illustrated by utilizing two
numerical examples. Based on the proposed results, we
can extend the idea of this paper to other system models
with Markovian jumping parameters [35, 36], time-varying
parameters [37, 38], stochastic uncertainties [39, 40], and
stochastic nonlinearities [41–43]. Moreover, the problems of
the robust state estimation and 𝐻

∞
filtering for discrete

GRNs with different scourers noises as in [44–46] will be
discussed in our future research.
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