4 research outputs found

    3D ICs: An Opportunity for Fully-Integrated, Dense and Efficient Power Supplies

    Get PDF
    International audienceWith 3D technologies, the in-package solution allows integrated, efficient and granular power supplies to be designed for multi-core processors. As the converter design obtains few benefits from the scaling, 3DIC allows the best technology to be chosen i.e. one which suits the DC-DC converter design. This paper evaluates the achievable power efficiency between on-die and in-package converters using a combination of active (28 and 65nm CMOS nodes) and passive (poly, MIM, vertical capacitor) layers. Based on the same load power consumption, on-die and in-package switched capacitor converters achieve 65% and 78% efficiency, respectively, in a 1mm 2 silicon area. An additional high density capacitance layer (100nF/mm 2) improves efficiency by more than 20 points in 65nm for the same surface which emphasizes the need for dedicated technology for better power management integration. This paper shows that in-package power management is a key alternative for fully-integrated, dense and efficient power supplies

    Sampled-Data Modeling of Switched- Capacitor Voltage Regulator With Frequency-Modulation Control

    No full text
    International audienceThe development of systems-on-chip requires embedded power management solutions due to the large number of power domains. The switched-capacitor voltage regulator is a suitable candidate as capacitors may be integrated whereas inductors still suffer limitations in that respect. Literature covers proposals of optimized power stages and several dedicated controllers for switched-capacitor DC-DC converters. Unfortunately the results do not cover systematic stability analyses. The paper proposes an original and systematic approach for the stability analysis of a switched-capacitor voltage regulator using sampled-data modeling. An application is given for a one-phase converter with a frequency-modulation based controller. The stability of the open-loop and closed-loop model is proposed and can be extended to multi-phase configurations

    System identification and adaptive current balancing ON/OFF control of DC-DC switch mode power converter

    Get PDF
    PhD ThesisReliability becomes more and more important in industrial application of Switch Mode Power Converters (SMPCs). A poorly performing power supply in a power system can influence its operation and potentially compromise the entire system performance in terms of efficiency. To maintain a high reliability, high performance SMPC effective control is necessary for regulating the output of the SMPC system. However, an uncertainty is a key factor in SMPC operation. For example, parameter variations can be caused by environmental effects such as temperature, pressure and humidity. Usually, fixed controllers cannot respond optimally and generate an effective signal to compensate the output error caused by time varying parameter changes. Therefore, the stability is potentially compromised in this case. To resolve this problem, increasing interest has been shown in employing online system identification techniques to estimate the parameter values in real time. Moreover, the control scheme applied after system identification is often called “adaptive control” due to the control signal selfadapting to the parameter variation by receiving the information from the system identification process. In system identification, the Recursive Least Square (RLS) algorithm has been widely used because it is well understood and easy to implement. However, despite the popularity of RLS, the high computational cost and slow convergence speed are the main restrictions for use in SMPC applications. For this reason, this research presents an alternative algorithm to RLS; Fast Affline Projection (FAP). Detailed mathematical analysis proves the superior computational efficiency of this algorithm. Moreover, simulation and experiment result verify this unique adaptive algorithm has improved performance in terms of computational cost and convergence speed compared with the conventional RLS methods. Finally, a novel adaptive control scheme is designed for optimal control of a DC-DC buck converter during transient periods. By applying the proposed adaptive algorithm, the control signal can be successfully employed to change the ON/OFF state of the power transistor in the DC-DC buck converter to improve the dynamic behaviour. Simulation and experiment result show the proposed adaptive control scheme significantly improves the transient response of the buck converter, particularly during an abrupt load change conditio
    corecore