24 research outputs found

    Sample-Efficient Learning of Mixtures

    Full text link
    We consider PAC learning of probability distributions (a.k.a. density estimation), where we are given an i.i.d. sample generated from an unknown target distribution, and want to output a distribution that is close to the target in total variation distance. Let F\mathcal F be an arbitrary class of probability distributions, and let Fk\mathcal{F}^k denote the class of kk-mixtures of elements of F\mathcal F. Assuming the existence of a method for learning F\mathcal F with sample complexity mF(ϵ)m_{\mathcal{F}}(\epsilon), we provide a method for learning Fk\mathcal F^k with sample complexity O(klogkmF(ϵ)/ϵ2)O({k\log k \cdot m_{\mathcal F}(\epsilon) }/{\epsilon^{2}}). Our mixture learning algorithm has the property that, if the F\mathcal F-learner is proper/agnostic, then the Fk\mathcal F^k-learner would be proper/agnostic as well. This general result enables us to improve the best known sample complexity upper bounds for a variety of important mixture classes. First, we show that the class of mixtures of kk axis-aligned Gaussians in Rd\mathbb{R}^d is PAC-learnable in the agnostic setting with O~(kd/ϵ4)\widetilde{O}({kd}/{\epsilon ^ 4}) samples, which is tight in kk and dd up to logarithmic factors. Second, we show that the class of mixtures of kk Gaussians in Rd\mathbb{R}^d is PAC-learnable in the agnostic setting with sample complexity O~(kd2/ϵ4)\widetilde{O}({kd^2}/{\epsilon ^ 4}), which improves the previous known bounds of O~(k3d2/ϵ4)\widetilde{O}({k^3d^2}/{\epsilon ^ 4}) and O~(k4d4/ϵ2)\widetilde{O}(k^4d^4/\epsilon ^ 2) in its dependence on kk and dd. Finally, we show that the class of mixtures of kk log-concave distributions over Rd\mathbb{R}^d is PAC-learnable using O~(d(d+5)/2ϵ(d+9)/2k)\widetilde{O}(d^{(d+5)/2}\epsilon^{-(d+9)/2}k) samples.Comment: A bug from the previous version, which appeared in AAAI 2018 proceedings, is fixed. 18 page

    Hashing-Based-Estimators for Kernel Density in High Dimensions

    Full text link
    Given a set of points PRdP\subset \mathbb{R}^{d} and a kernel kk, the Kernel Density Estimate at a point xRdx\in\mathbb{R}^{d} is defined as KDEP(x)=1PyPk(x,y)\mathrm{KDE}_{P}(x)=\frac{1}{|P|}\sum_{y\in P} k(x,y). We study the problem of designing a data structure that given a data set PP and a kernel function, returns *approximations to the kernel density* of a query point in *sublinear time*. We introduce a class of unbiased estimators for kernel density implemented through locality-sensitive hashing, and give general theorems bounding the variance of such estimators. These estimators give rise to efficient data structures for estimating the kernel density in high dimensions for a variety of commonly used kernels. Our work is the first to provide data-structures with theoretical guarantees that improve upon simple random sampling in high dimensions.Comment: A preliminary version of this paper appeared in FOCS 201
    corecore