11,797 research outputs found

    Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems

    Get PDF
    Learning-based control algorithms require data collection with abundant supervision for training. Safe exploration algorithms ensure the safety of this data collection process even when only partial knowledge is available. We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained stochastic optimal control with dynamics learning and feedback control. We derive an iterative convex optimization algorithm that solves an \underline{Info}rmation-cost \underline{S}tochastic \underline{N}onlinear \underline{O}ptimal \underline{C}ontrol problem (Info-SNOC). The optimization objective encodes both optimal performance and exploration for learning, and the safety is incorporated as distributionally robust chance constraints. The dynamics are predicted from a robust regression model that is learned from data. The Info-SNOC algorithm is used to compute a sub-optimal pool of safe motion plans that aid in exploration for learning unknown residual dynamics under safety constraints. A stable feedback controller is used to execute the motion plan and collect data for model learning. We prove the safety of rollout from our exploration method and reduction in uncertainty over epochs, thereby guaranteeing the consistency of our learning method. We validate the effectiveness of Info-SNOC by designing and implementing a pool of safe trajectories for a planar robot. We demonstrate that our approach has higher success rate in ensuring safety when compared to a deterministic trajectory optimization approach.Comment: Submitted to RA-L 2020, review-

    Policy Search: Any Local Optimum Enjoys a Global Performance Guarantee

    Get PDF
    Local Policy Search is a popular reinforcement learning approach for handling large state spaces. Formally, it searches locally in a paramet erized policy space in order to maximize the associated value function averaged over some predefined distribution. It is probably commonly b elieved that the best one can hope in general from such an approach is to get a local optimum of this criterion. In this article, we show th e following surprising result: \emph{any} (approximate) \emph{local optimum} enjoys a \emph{global performance guarantee}. We compare this g uarantee with the one that is satisfied by Direct Policy Iteration, an approximate dynamic programming algorithm that does some form of Poli cy Search: if the approximation error of Local Policy Search may generally be bigger (because local search requires to consider a space of s tochastic policies), we argue that the concentrability coefficient that appears in the performance bound is much nicer. Finally, we discuss several practical and theoretical consequences of our analysis
    corecore