143,032 research outputs found

    Local feature selection for multiple instance learning with applications.

    Get PDF
    Feature selection is a data processing approach that has been successfully and effectively used in developing machine learning algorithms for various applications. It has been proven to effectively reduce the dimensionality of the data and increase the accuracy and interpretability of machine learning algorithms. Conventional feature selection algorithms assume that there is an optimal global subset of features for the whole sample space. Thus, only one global subset of relevant features is learned. An alternative approach is based on the concept of Local Feature Selection (LFS), where each training sample can have its own subset of relevant features. Multiple Instance Learning (MIL) is a variation of traditional supervised learning, also known as single instance learning. In MIL, each object is represented by a set of instances, or a bag. While bags are labeled, the labels of their instances are unknown. The ambiguity of the instance labels makes the feature selection for MIL challenging. Although feature selection in traditional supervised learning has been researched extensively, there are only a few methods for the MIL framework. Moreover, localized feature selection for MIL has not been researched. This dissertation focuses on developing a local feature selection method for the MIL framework. Our algorithm, called Multiple Instance Local Salient Feature Selection (MI-LSFS), searches the feature space to find the relevant features within each bag. We also propose a new multiple instance classification algorithm, called MILES-LFS, that integrates information learned by MI-LSFS during the feature selection process to identify a reduced subset of representative bags and instances. We show that using a more focused subset of prototypes can improve the performance while significantly reducing the computational complexity. Other applications of the proposed MI-LSFS include a new method that uses our MI-LSFS algorithm to explore and investigate the features learned by a Convolutional Neural Network (CNN) model; a visualization method for CNN models, called Gradient-weighted Sample Activation Map (Grad-SAM), that uses the locally learned features of each sample to highlight their relevant and salient parts, and a novel explanation method, called Classifier Explanation by Local Feature Selection (CE-LFS), to explain the decisions of trained models. The proposed MI-LSFS and its applications are validated using several synthetic and real data sets. We report and compare quantitative measures such as Rand Index, Area Under Curve (AUC), and accuracy. We also provide qualitative measures by visualizing and interpreting the selected features and their effects

    Cross-attention-based saliency inference for predicting cancer metastasis on whole slide images

    Full text link
    Although multiple instance learning (MIL) methods are widely used for automatic tumor detection on whole slide images (WSI), they suffer from the extreme class imbalance within the small tumor WSIs. This occurs when the tumor comprises only a few isolated cells. For early detection, it is of utmost importance that MIL algorithms can identify small tumors, even when they are less than 1% of the size of the WSI. Existing studies have attempted to address this issue using attention-based architectures and instance selection-based methodologies, but have not yielded significant improvements. This paper proposes cross-attention-based salient instance inference MIL (CASiiMIL), which involves a novel saliency-informed attention mechanism, to identify breast cancer lymph node micro-metastasis on WSIs without the need for any annotations. Apart from this new attention mechanism, we introduce a negative representation learning algorithm to facilitate the learning of saliency-informed attention weights for improved sensitivity on tumor WSIs. The proposed model outperforms the state-of-the-art MIL methods on two popular tumor metastasis detection datasets, and demonstrates great cross-center generalizability. In addition, it exhibits excellent accuracy in classifying WSIs with small tumor lesions. Moreover, we show that the proposed model has excellent interpretability attributed to the saliency-informed attention weights. We strongly believe that the proposed method will pave the way for training algorithms for early tumor detection on large datasets where acquiring fine-grained annotations is practically impossible

    Automatic annotation for weakly supervised learning of detectors

    Get PDF
    PhDObject detection in images and action detection in videos are among the most widely studied computer vision problems, with applications in consumer photography, surveillance, and automatic media tagging. Typically, these standard detectors are fully supervised, that is they require a large body of training data where the locations of the objects/actions in images/videos have been manually annotated. With the emergence of digital media, and the rise of high-speed internet, raw images and video are available for little to no cost. However, the manual annotation of object and action locations remains tedious, slow, and expensive. As a result there has been a great interest in training detectors with weak supervision where only the presence or absence of object/action in image/video is needed, not the location. This thesis presents approaches for weakly supervised learning of object/action detectors with a focus on automatically annotating object and action locations in images/videos using only binary weak labels indicating the presence or absence of object/action in images/videos. First, a framework for weakly supervised learning of object detectors in images is presented. In the proposed approach, a variation of multiple instance learning (MIL) technique for automatically annotating object locations in weakly labelled data is presented which, unlike existing approaches, uses inter-class and intra-class cue fusion to obtain the initial annotation. The initial annotation is then used to start an iterative process in which standard object detectors are used to refine the location annotation. Finally, to ensure that the iterative training of detectors do not drift from the object of interest, a scheme for detecting model drift is also presented. Furthermore, unlike most other methods, our weakly supervised approach is evaluated on data without manual pose (object orientation) annotation. Second, an analysis of the initial annotation of objects, using inter-class and intra-class cues, is carried out. From the analysis, a new method based on negative mining (NegMine) is presented for the initial annotation of both object and action data. The NegMine based approach is a much simpler formulation using only inter-class measure and requires no complex combinatorial optimisation but can still meet or outperform existing approaches including the previously pre3 sented inter-intra class cue fusion approach. Furthermore, NegMine can be fused with existing approaches to boost their performance. Finally, the thesis will take a step back and look at the use of generic object detectors as prior knowledge in weakly supervised learning of object detectors. These generic object detectors are typically based on sampling saliency maps that indicate if a pixel belongs to the background or foreground. A new approach to generating saliency maps is presented that, unlike existing approaches, looks beyond the current image of interest and into images similar to the current image. We show that our generic object proposal method can be used by itself to annotate the weakly labelled object data with surprisingly high accuracy

    Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground

    Full text link
    We provide a comprehensive evaluation of salient object detection (SOD) models. Our analysis identifies a serious design bias of existing SOD datasets which assumes that each image contains at least one clearly outstanding salient object in low clutter. The design bias has led to a saturated high performance for state-of-the-art SOD models when evaluated on existing datasets. The models, however, still perform far from being satisfactory when applied to real-world daily scenes. Based on our analyses, we first identify 7 crucial aspects that a comprehensive and balanced dataset should fulfill. Then, we propose a new high quality dataset and update the previous saliency benchmark. Specifically, our SOC (Salient Objects in Clutter) dataset, includes images with salient and non-salient objects from daily object categories. Beyond object category annotations, each salient image is accompanied by attributes that reflect common challenges in real-world scenes. Finally, we report attribute-based performance assessment on our dataset.Comment: ECCV 201

    Multiple Instance Curriculum Learning for Weakly Supervised Object Detection

    Full text link
    When supervising an object detector with weakly labeled data, most existing approaches are prone to trapping in the discriminative object parts, e.g., finding the face of a cat instead of the full body, due to lacking the supervision on the extent of full objects. To address this challenge, we incorporate object segmentation into the detector training, which guides the model to correctly localize the full objects. We propose the multiple instance curriculum learning (MICL) method, which injects curriculum learning (CL) into the multiple instance learning (MIL) framework. The MICL method starts by automatically picking the easy training examples, where the extent of the segmentation masks agree with detection bounding boxes. The training set is gradually expanded to include harder examples to train strong detectors that handle complex images. The proposed MICL method with segmentation in the loop outperforms the state-of-the-art weakly supervised object detectors by a substantial margin on the PASCAL VOC datasets.Comment: Published in BMVC 201

    Active Classification: Theory and Application to Underwater Inspection

    Full text link
    We discuss the problem in which an autonomous vehicle must classify an object based on multiple views. We focus on the active classification setting, where the vehicle controls which views to select to best perform the classification. The problem is formulated as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We formally analyze the benefit of acting adaptively as new information becomes available. The analysis leads to a probabilistic algorithm for determining the best views to observe based on information theoretic costs. We validate our approach in two ways, both related to underwater inspection: 3D polyhedra recognition in synthetic depth maps and ship hull inspection with imaging sonar. These tasks encompass both the planning and recognition aspects of the active classification problem. The results demonstrate that actively planning for informative views can reduce the number of necessary views by up to 80% when compared to passive methods.Comment: 16 page
    • …
    corecore