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ABSTRACT

LOCAL FEATURE SELECTION FOR MULTIPLE INSTANCE LEARNING

WITH APPLICATIONS

Aliasghar Shahrjooihaghighi

November 19, 2021

Feature selection is a data processing approach that has been successfully and

effectively used in developing machine learning algorithms for various applications. It

has been proven to effectively reduce the dimensionality of the data and increase the

accuracy and interpretability of machine learning algorithms. Conventional feature

selection algorithms assume that there is an optimal global subset of features for the

whole sample space. Thus, only one global subset of relevant features is learned. An

alternative approach is based on the concept of Local Feature Selection (LFS), where

each training sample can have its own subset of relevant features.

Multiple Instance Learning (MIL) is a variation of traditional supervised learn-

ing, also known as single instance learning. In MIL, each object is represented by

a set of instances, or a bag. While bags are labeled, the labels of their instances

are unknown. The ambiguity of the instance labels makes the feature selection for

MIL challenging. Although feature selection in traditional supervised learning has

been researched extensively, there are only a few methods for the MIL framework.

Moreover, localized feature selection for MIL has not been researched.

This dissertation focuses on developing a local feature selection method for
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the MIL framework. Our algorithm, called Multiple Instance Local Salient Feature

Selection (MI-LSFS), searches the feature space to find the relevant features within

each bag. We also propose a new multiple instance classification algorithm, called

MILES-LFS, that integrates information learned by MI-LSFS during the feature se-

lection process to identify a reduced subset of representative bags and instances. We

show that using a more focused subset of prototypes can improve the performance

while significantly reducing the computational complexity.

Other applications of the proposed MI-LSFS include a new method that uses

our MI-LSFS algorithm to explore and investigate the features learned by a Con-

volutional Neural Network (CNN) model; a visualization method for CNN models,

called Gradient-weighted Sample Activation Map (Grad-SAM), that uses the locally

learned features of each sample to highlight their relevant and salient parts, and a

novel explanation method, called Classifier Explanation by Local Feature Selection

(CE-LFS), to explain the decisions of trained models.

The proposed MI-LSFS and its applications are validated using several syn-

thetic and real data sets. We report and compare quantitative measures such as Rand

Index, Area Under Curve (AUC), and accuracy. We also provide qualitative measures

by visualizing and interpreting the selected features and their effects.
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CHAPTER 1

INTRODUCTION

In the past decade, the increasing trend of high-dimensional data in various do-

mains such as social media, health care, bioinformatics, and image processing raised

new challenges in the effectiveness of data processing, data management, and the ap-

plication of machine learning algorithms. One technique to reduce the drawbacks of

the high dimensionality on machine learning algorithms is to integrate feature selec-

tion within the learning process. Feature selection seeks to find the most informative

features in the data space by eliminating redundant and non-informative features.

It can lead to a better understanding of the data, reducing the complexity of the

learning algorithms and the data storage, and improving the generalization of the

prediction models [4].

1.1 Feature Selection

Several feature selection algorithms have been proposed and applied success-

fully to various applications and domains within the machine learning community.

Good reviews of feature selection algorithms can be found in [4–8]. Traditional fea-

ture selection algorithms strive to identify a global set of features that represents the

behavior of the given data. They search the entire sample space to learn one opti-
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mal subset of informative features that are common for the majority of the samples.

The main limitation of this approach is that it ignores the potential variation of the

relevant features across the different regions in the feature space.

Recently, in [9], the authors introduced a novel concept of localized feature

selection by considering each sample of the training set as a representative of its

neighboring region. In this approach, one subset of informative features is identified

for each sample.

1.2 Multiple Instance Learning

Multiple Instance Learning (MIL) is a variation of supervised learning algo-

rithms where each object is represented by a set of feature vectors, called a bag. Each

feature vector is called an instance. In MIL, the bags are labeled, but the label of

the instances are unknown. A bag is labeled negative if it contains only negative

instances, and positive if it contains at least one positive instance. In Multiple In-

stance Classification (MIC) learning problems, we learn a model using the training

set of bags to predict the label of unseen bags [10]. MIL has been actively studied

since many applications can be better formulated using the multiple instance learn-

ing framework. Examples of such applications include drug discovery, classification

of text documents, classification of images, speaker recognition, and bankruptcy pre-

diction [10].

The characteristics of MIL problems, especially having ambiguous instance la-

bels inside the bags, make the feature selection process in MIC applications more com-

plex, challenging, and needed than the conventional classification problems. More-
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over, while feature selection in conventional learning has been studied extensively,

there are only few feature selection algorithms proposed for MIL [11–18]. Thus, fea-

ture selection in MIL is an area that can benefit from more research.

1.3 Contributions

1.3.1 Local Feature Selection for MIL

In this thesis, we address the feature selection problem in multiple instance

learning using the concept of local feature selection. Unlike traditional feature selec-

tion methods where a global subset of features is assigned to the whole data set, the

aim of local feature selection is to find a subset of features for each bag that repre-

sents its local behavior. To tackle this problem, we investigate and propose a feature

selection method for MIL, called Multiple Instance learning Localized Salient Feature

Selection (MI-LSFS). Our approach is an extension of the recently proposed logistic

Localized Feature Selection (lLFS) [9] to multiple instance data. MI-LSFS learns a

subset of features for each bag instead of learning one global set of selected features

for the whole data set. To the best of our knowledge, this is the first approach that

addresses localized feature selection for MIL.

To design the algorithm, we adapt a measure of distance for the non-vertical

entities (bags) that allows comparing bags and is compatible with the assumptions of

the distance function used in the lLFS (1-norm distance). In particular, we use the

minimal Hausdorff distance [19]. Moreover, to evaluate the clustering performance

during the learning process, we combine impurity with Matthews Correlation Coeffi-
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cient (MCC) [20]. Adding the MCC term allows us to control the performance of the

clustering by considering a balanced measure instead of using only the true positive

values and false positive.

1.3.2 Applications of MI-LSFS

As MI-LSFS assigns a subset of features for each bag, common MIL classifiers

cannot interpret and take advantage of this information. Therefore, we propose a

new MIL classifier that uses local information provided by MI-LSFS. We call our

proposed classifier MILES-LFS as it uses some techniques used in the MILES [21]

algorithm. More specifically, we designed a classifier that uses the local information

learned by MI-LSFS during the feature selection process to perform the classification

task. This information includes the set of selected features for each bag, a filtering

strategy for the irrelevant instances, and performing the instance selection task. The

instance selection strategy decreases the dimensionality of the data set in the learning

process and reduces the learning time. Therefore, our proposed method can be used

as a feature selection and an instance selection. Using the locally selected informa-

tive features, we show that MI-LSFS leads to improving the prediction performance

and explainability. Furthermore, we show that MI-LSFS can guide the learning algo-

rithms in discovering the underlying information for the local regions. This underlying

information can be helpful in interpreting the results of the learning algorithms.

Convolutional Neural Networks (CNN) have been successfully applied and

adapted to many applications, especially in the computer vision domain. Despite

the widespread usage of the CNNs, in classification or as feature extractors, they are

4



often being criticized for working as a black box. In general, black box models are

insufficient in interpreting the learned features and explaining the results. To address

this limitation, we propose an explanation method for the decisions of a CNN model.

In particular, we use our MI-LSFS algorithm to explore and investigate the features

learned by a CNN model.

Interpreting the features learned by CNN models are often done by using scien-

tific visualization methods. Typically, the visualization methods highlight the salient

segments of the input that are highly correlated to the predicted class. As another

application of our proposed localized feature selection, we propose a visualization

method, called Gradient-weighted Sample Activation Map (Grad-SAM), that inte-

grates the locally learned features and highlights the relevant and salient parts of

each sample.

Another application of our MI-LSFS that we propose is to explain the decisions

made by trained machine learning models. We call our proposed approach Classifier

Explanation by Local Feature Selection (CE-LFS). In particular, we use the set of

locally salient features of each sample, to describe why the trained model classifies a

given sample correctly/incorrectly. The ability to explain the decision of a classifier

is critical in using these methods in real applications.

To summarize, the main contributions of this thesis include:

1. A local feature selection method for MIL, called Multiple Instance learning

Localized Salient Feature Selection (MI-LSFS). To the best of our knowledge,

this is the first approach that addresses localized feature selection for multiple

instance data.
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2. A new multiple instance classification algorithm, MILES-LFS, that uses the

local information provided by MI-LSFS.

3. A new method that uses our MI-LSFS algorithm to explore and investigate the

features learned by a CNN model.

4. A visualization method for CNN models, called Gradient-weighted Sample Ac-

tivation Map (Grad-SAM), that uses the locally learned features of each sample

to highlight their relevant and salient parts.

5. A novel explanation method, called Classifier Explanation by Local Feature

Selection (CE-LFS), to describe the decisions of trained models.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides a

review of concepts that are highly relevant to our work. This includes feature selec-

tion, local feature selection, multiple instance learning, feature selection methods in

MIL, and deep learning models (i.e., CNNs). Chapter 3 describes the proposed MIL

feature selection method, MI-LSFS1. Chapter 4 presents our proposed applications of

MI-LSFS, including a new MIL classification method called MILES-LFS, our CNN

explainability method, our visualization method, called Grad-SAM, and our classifier

explanation method called (CE-LFS). Chapter 5 evaluates the performance of our

proposed methods and presents experimental results. Finally, chapter 6 concludes by

summarizing and recommending some future research directions.

1This paper was published in [22].

6



CHAPTER 2

BACKGROUND

In this chapter, we review the literature and methods that are relevant to

our proposed work. First, we review feature selection methods for the standard

single instance learning approach. Then, we describe the Multiple Instance Learning

framework. Next, we review literature related to feature selection in Multiple Instance

Learning, and we provide a detailed description of local feature selection methods

and describe the lLFS [9] algorithm. Finally, we review deep learning methods with a

focus on Convolutional Neural Networks’ (CNN) architectures, and we overview two

common visualization techniques for CNNs.

2.1 Feature Selection Methods

Feature selection is an important step in machine learning, especially when

dealing with high dimensional data (i.e., each sample is represented by a large num-

ber of features). Feature selection methods reduce the dimensionality of data by

selecting a subset of the most discriminating features. This helps subsequent learning

algorithms focus on the features that have maximum effect on the prediction mod-

els, improve the accuracy of predicting the samples’ category, and reduce the time

complexity of the algorithms [23].
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2.2 Feature Selection Taxonomy

There are three main categories of feature selection methods [4, 24]. Filter

methods [25–27] assign a score (or a rank) to the features by using a measure indi-

cating their discriminating power. Features with low scores will be eliminated. Filter

methods are fast and independent of the prediction models. Unlike the filter methods,

wrapper methods depend on the algorithm used for the prediction [28–30]. They strive

to find the optimal combination of features that maximizes the prediction’s accuracy.

The wrapper methods are typically computationally more expensive than the filter

methods. The third category of feature selection methods are based on embedded

methods. These methods are also dependent on the classifiers, but with a lower com-

putational complexity. They interact with the classification method in the training

phase and they use internal information from the classification method [5,31,32].

In [33], Chandrashekar et al. provide an introduction to feature selection tech-

niques and compare multiple feature selection algorithms. Their objective was to

provide a generic introduction to variable elimination. They compare the perfor-

mance of various feature selection methods on 7 data sets using SVM and neural

networks classifiers.

In [34], Miao et al. reviewed several feature selection methods. They performed

experiments to check if feature selection can increase the performance of learning using

12 real life data sets, including three microarray data sets.

In [35], Cai et al. surveyed and reviewed feature selection methods and evalu-

ation measures for machine learning applications. They reviewed the methods used
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in several applications such as image recognition, image retrieval, bioinformatics data

analysis. Their analysis concluded that the ensemble methods are especially useful

when the data contain small number of samples.

2.2.1 Ensemble Methods for Feature Selection

Ensemble learning combines the output of multiple algorithms to take advan-

tages of their strengths and overcome their weaknesses. There is an increasing trend

of using ensemble methods in applications such as sequence analysis, microarray anal-

ysis and mass spectra analysis due to the small number of samples and large number

of features. A review of ensemble methods that have been applied to bioinformatics

can be found in [36].

Several studies have concluded that ensemble feature selection methods can

improve the stability of algorithms, give a better approximation of optimal ranking of

features and lead to more robust feature selection [31,36–42]. For instance, in [43], the

authors provided a review of the stability of feature selection techniques for biomarker

discovery. They concluded that ensemble learning can improve the stability of the

discovered biomarkers.

2.3 Local Feature Selection

Conventional feature selection algorithms assume that there is a global subset

of features that is optimal for the whole sample space. This optimal subset may be

learned by considering the local behavior of the samples. However, only one global

subset of relevant features [9] is learned. Examples of feature selection methods that
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use the local information of samples during the learning process are based on the

Relief feature selection algorithm [44]. These methods strive to capture the local

structure of the data by setting the margins locally for each region of interest in the

randomly selected samples. In [45], the authors proposed a feature selection algorithm

for classification. The main idea is to first decompose an arbitrary complex nonlinear

problem into a set of locally linear ones through local learning. Next, feature relevance

weights are learned globally within the margin framework.

An alternative approach is based on the concept of Local Feature Selection

(LFS) [46]. LFS overcomes the limitations of conventional feature selection methods

by adapting to the statistical variations across the different regions of the sample

space. It considers each training sample as a representative of the sample space in

a local region. Therefore, different subsets of features will be selected for different

regions instead of using one common subset for the whole sample space. The logistic

Localized Feature Selection (lLFS) algorithm [9], which is a variation of LFS, is

outlined in the following section.

2.4 Logistic Localized Feature Selection Method (lLFS)

The goal of the lLFS is to find an optimal feature subset for each sample by

considering each sample as a representative of a local region in the sample space. Let

{S1, ..., SN} be the N training data samples where Si ∈ RM and M is the dimension-

ality of the original sample space. Let f (i) ∈ {0, 1}M indicate the selected features

for the region centered at sample Si. Let f
(i)
m denote the selection status of the mth

feature of Si. If the mth feature of Si is selected, then f
(i)
m is set to 1, otherwise it is
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set to 0. Let S
(i)
p denote the projection of Si onto the subspace of selected features

represented by f (i). The goal is to find f (i) for Si such that the projection of all the

samples onto f (i) minimizes the intra-class distances and maximizes the inter-class

distances simultaneously.

Let D(Si, Sj) denote the distance between two given samples Si and Sj using

all M features, and let D(Si, Sj, f
(i)) denote the distance between the projection of

samples Si and Sj onto the subspace represented by f (i). To learn f (i), the authors

in [9] define and optimize two objective functions. The first one is defined using the

distance between sample i and all other samples that have the same label as sample i:

U1(f
(i)) =

1

Ni − 1

∑
j;yj=yi;j ̸=i

g
(
D(Si, Sj, f

(i)), σ(i), λ
)
. (2.1)

The second objective function is defined using the distance between sample i

and all other samples with different labels as i:

U2(f
(i)) =

1

N −Ni

∑
j;yj ̸=yi

g
(
D(Si, Sj, f

(i)), σ(i), λ
)

(2.2)

In (2.1) and (2.2), Ni is the number samples with the same label as Si. The

other parameters, λ , σ(i), and the logistic function g will be discussed later. The

objective functions U1 and U2 measure the intra-class distance and inter-class dis-

tance, respectively. The goal is to find a subset of features f (i) where the intra-class

distance is minimized and the inter-class distance is maximized. The resulting f (i)

will represent the informative features for the local region centered at Si that keep the

intra-class samples as close as possible and the inter-class samples as far as possible.

Formally, using the two objective functions in (2.1) and (2.2), the optimization

process can be formulated as:
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

minf (i) U1(f
(i))

maxf (i) U2(f
(i))

s.t.


f (i) ∈ {0, 1}M

1 ≤ 1Tf (i) ≤ α

(2.3)

By restricting 1Tf (i) between 1 and α, the number of selected features is set to be at

least 1 and at most α features.

In (2.1) and (2.2), the logistic function g is defined as:

g(z, σ, λ) =
1

1 + exp(−σz)
− 0.5 + λz. (2.4)

The role of this function is to transform the distance between the samples such that

closer samples will have more influence on the objective function and dominate the

feature selection process. Similarly, farther samples will have a minimal effect on the

selection of f (i). In (2.4), the purpose of the linear term λz is to give a chance to the

potentially relevant samples that are far from S
(i)
p to get closer to S

(i)
p in subsequent

iterations of the optimization process.

2.4.1 Optimization

The optimization problem in (2.3) is a multi-objective optimization problem.

One way to solve it is to use the Pareto optimality concept [47]. Using this strategy,

the objective functions in (2.3) are combined to form the following single objective

function:
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

min
f
(i)
β

U1(f
(i)
β )

s.t.



f
(i)
m,β ∈ [0, 1]

1 ≤ 1Tf (i) ≤ α

U2(f
(i)
β ) ≥ βϵ

(i)
max.

(2.5)

In (2.5), β is a set of constraint values, in the range of [0,1], that control the

number of Pareto points, f
(i)
β represents the selected features of Si for a given β, and

ϵ
(i)
max is the maximum feasible value of U2 for the given sample Si that is computed

using:



ϵ
(i)
max = maxf (i) U2(f

(i))

s.t.


0 ≤ f

(i)
m ≤ 1,m = 1, ...,M

1 ≤ 1Tf (i) ≤ α.

(2.6)

In other words, (2.5) finds a solution for the optimization problem for each value of

β. In [9], the authors discussed the feasibility of this approach in details. A solution

of (2.5), f
(i)
β , is a relaxed solution where its elements are within the continuous range

[0,1]. Therefore, a randomized rounding process [47] can be applied to f
(i)
β to convert

it into a binary solution. Let f
∗(i)
β denote the binary solution where each element

represents the selection status of its corresponding feature (i.e., 1 if the feature is

selected and 0 if it is not).
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2.4.2 Using Local Clustering to Find the Optimal β

The randomized rounding process generates multiple binary solutions for each

sample Si (i.e., f
∗(i)
β , β ∈ [0, 1]). The optimal solution, denoted f ∗(i), is selected based

on the clustering performance in the local region using the training set.

To evaluate the clustering performance of each f
∗(i)
β , the authors in [9] used

the impurity measure. Impurity is defined as the ratio of the number of samples

with different class labels to the number of samples with the same class label. For

a given sample Si, lLFS searches for a radius r(i) such that the impurity level inside

the hypersphere, centered at Si with radius r(i), is less than a fixed threshold (e.g.,

0.2). Then, the feature set with the best clustering performance on the training set

is selected as f ∗(i).

2.4.3 Parameters of the Logistic Function

The logistic function in (2.4) has two parameters that need to be assigned in

the optimization process: λ and σ(i). The parameter σ(i) is assigned based on the

initialization value of the selected features f
(i)
β . It is calculated based on the point

from the Si that sits on the knee point of the logistic function [9]. Formally, σ(i) is

calculated using (2.7) where the value of 0.47 is set based on the knee point of the

logistic function in (2.4).


1

1+exp(−σ(i)φ(i))
− 0.5 = 0.47

φ(i) = maxj=1..N,j ̸=i{D(Si, Sj, f
(i))},

(2.7)
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In (2.7), λ is set to the default value of 0.01/α at the initialization step. The lLFS

algorithm is outlined in Algorithm 1.

Algorithm 1: Logistic Localized Feature Selection

Input:
1 S : Samples
2 Y : labels
3 N : Number of Samples
4 M : Number of features
5 α : Controls the maximum number of features to be selected
Output:

6 {f ∗(i)}, i = 1, ..., N : selected features for each sample

7 f
(i)
β = 1

α
(1, ..., 1), i = 1, ..., N

8 λ = 0.01
α

9 β = [0, 1]
10 for i = 1 to N do
11 Compute σ(i) by solving (2.7);

12 Compute ϵ
(i)
max by solving (2.6);

13 for β = 0 to 1 do

14 Compute f
(i)
β by solving (2.5);

15 Randomized rounding process of f
(i)
β to obtain binary feature

vector f
∗(i)
β ;

16 set f ∗(i) equal to the member of f
∗(i)
β , β ∈ [0, 1] which yields the best

local clustering performance using a leave one out cross validation
approach in the local region;

2.5 Multiple Instance Learning

In conventional supervised learning problems, each object is represented by

a fixed length feature vector and each training feature vector is assigned a label.

Multiple Instance Learning (MIL) is a variation of supervised learning algorithms

where each object is represented by a bag. Each bag includes a set of feature vectors

(instances) [48]. For the training data, labels are assigned only at the bag level and

15



instances within the bag are unlabeled.

Let D = {< Bi, yi >}Ni=1 denote the training data where Bi and yi represent

the ith bag and its label, respectively, and N is the number of bags. Each bag

Bi = {x⃗i,1, x⃗i,2, ..., x⃗i,k}|Bi|
k=1 has a set of |Bi| instances where each instance, x⃗i,k ∈ IRM ,

is an M-dimensional feature vector.

Let yi denote the label of Bi. In binary MIL problems, bags are labeled positive

(yi = +1) or negative (yi = −1). The standard MIL algorithm assumption is that

negative bags contain only negative instances and positive bags contain at least one

positive instance. Formally, let yi,k denote the label of instances inside Bi and yi

denote the label of Bi.

yi =


+1 if ∃yi,k : yi,k = +1

−1 if ∀yi,k : yi,k = −1.

(2.8)

We should emphasize here that yi,k are unknown even for the labeled training

data. Despite this ambiguity in the instances’ labels, MIL has proved to be an

appropriate representation for various applications such as drug discovery [49], image

annotation [50], text classification [51], buried object detection [52], video concept

detection [53] and cancer nodules classification [54]. In fact, for most of the above

applications MIL was shown to outperform standard supervised learning methods.

2.5.1 MIL Classification

Multiple Instance learning Classification (MIC), can be performed at two levels:

bag and instance. In bag-level classification, the goal is to assign class label to the bags
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and the individual instance labels are not needed. These methods cannot perform

instance classification [55–57]. On the other hand, in the instance level classification,

the objective is to assign labels to the individual instances [57], and instances’ labels

are used to the bag labels. Thus, the loss functions for the two classification tasks are

different [58]. We should emphasize here that the performance of a MIL classification

algorithm is typically evaluated at the bag level since instance labels are unknown.

An example of instance level classification is the mi-SVM algorithm [51] where

the instance initial labels are inherited from the bag labels. Then, the SVM starts the

training using the instance labels and continues training using the new labels assigned

by the learned SVM model until the instances labels do not change. The trained SVM

classifier is then used to predict the class of instances of new test bags. The authors

in [51] also proposed MI-SVM algorithm which is an alternative approach of applying

maximum margin concept to the MIL where the objective is to maximize the bag

margin. In MI-SVM, the bag margin is defined by the most positive instance of each

positive bag. In other words, only one pattern per positive bag matters, since it will

determine the margin of the bag.

The Diverse Density (DD) algorithm [49] is another common MIL approach.

The DD optimizes an objective function to find a soft region that maximizes instances

from positive bags and minimizes instances from negative bags. The EM-DD [55],

uses the Expectation-Maximization (EM) algorithm to maximize the DD objective

function. SI-SVM [59], RSIS [60], and MIL-Boost [61] are other examples of instance

level algorithms [4].

MIGraph and miGraph [62] are two bag-level algorithms proposed for MIL.
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They treat the instances in a non independently and identically distributed (i.i.d.)

way. The idea is that the instances of a bag are rarely independent, and a better

performance can be expected if the instances are treated in an non-i.i.d. way where

the relation between instances are considered. In MIGraph, every bag is mapped to

an undirected graph. Then, a graph kernel is designed to distinguish between positive

and negative bags. In miGraph, graphs are constructed by deriving affinity matri-

ces and an efficient graph kernel that considers the clique information is proposed.

Citation-kNN [19], MILES [21], and EMD-SVM [63] are some other bag-level algo-

rithms. Comparative studies of several MIL algorithms can be found in [10,59,64,65].

2.5.1.1 Citation k-Nearest Neighbors

The Citation k-Nearest Neighbors (Citation-kNN) [19] is an adaptation of the

k-Nearest Neighbors (kNN) classifier for MIL. In the standard kNN, to classify a

query sample, a distance function is used to find the k nearest neighbors to the query

sample. Then, the query sample label is computed using the label of the nearest

neighbors. The Citation-kNN follows the kNN steps but using a two-level voting

approach inspired from the notion of citations and references in library and research

papers. Specifically, a new test bag, is labeled based on the labels of its neighboring

bags (references) and the labels of the bags that consider the test bag as one of their

kNN neighbors (citers).

Formally, Citation-kNN uses the Hausdorff distance to compute the distance

between two given bags, B1 and B2, of instances {x1,j}m1
j=1 and {x2,j}m2

j=1, respectively.
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The Hausdorff distance between B1 and B2 is defined as:

H(B1, B2) = min
x1,j∈B1,x2,j∈B2

{
dist(x1,j, x2,j)

}
, (2.9)

where dist is a distance measure between instances (e.g., Euclidean distance).

Let Rank(B1, B2) equal n if B2 is the nth nearest neighbor of B1. For the sake

of completeness, the authors in [19] set Rank(B1, B1) to ∞. The C-nearest citers of

B are the C bags that return the lowest neighbor ranking for B, i.e.,

Citers(B,C) = {Bi |Rank(Bi, B) ≤ C, Bi ∈ B}, (2.10)

where B is the set of all training bags.

The decision of the Citation-kNN relies not only on the neighbors of bag B

(references), but also on the bags that count B as a neighbor (citers). In other words,

given a bag B, its K-nearest references and C-nearest citers are identified using (2.9)

and (2.10). Then, B is labeled based on the label of its references and citers. Thus, B

is classified as positive if there more positive bags than negative bags in its combined

K-references and C-citers. C is usually set to K+2.

2.5.1.2 MILES

The Multiple Instance Learning via Embedded Structures (MILES) [21] is a

multiple instance learning classification algorithm. It converts the MIL problem into a

standard supervised learning problem by mapping each bag to a feature space defined

by the instances in the training bags using a similarity measure. The mapped bags

are then represented as standard feature vectors in the instance feature space [66].
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After mapping, 1-Norm SVM [21] is applied to construct the classifier. The main

steps of MILES are discussed below.

Feature mapping: At this step, each bag Bi, is mapped to a feature space based

on its similarity to a set of target concepts, C = {x⃗t
1, . . . , x⃗

t
j, . . . , x⃗

t
|C|}, where |C| is

the number of instances in the target concept set. Let m(Bi) denote the mapping of

Bi defined as

m(Bi) = [S(x⃗t
1, Bi), . . . , S(x⃗

t
j, Bi), . . . , S(x⃗

t
|C|, Bi)]. (2.11)

In (2.11), S(x⃗t
j, Bi) is the similarity between bag Bi = {x⃗i,1, x⃗i,2, . . . , x⃗i,k}|Bi|

k=1

and a concept x⃗t
j ∈ C which is determined by the closest instance in Bi to x⃗t

j and it

is calculated using:

Pr(x⃗j|Bi) ∝ S(x⃗j, Bi) = max
k

{
exp
(
−

||x⃗i,k − x⃗t
j||2

σ2

)}
. (2.12)

In 2.12, σ is a scaling factor.

MILES Training: First, MILES uses (2.12) to map the training bags and form the

mapped training data. In [21], the authors assume that all of the instances within all

training positive bags are in the target concept set. Thus, C = {x⃗i,j|x⃗i,j ∈ Bi, yi = 1}.

For a given training set that contains ℓ+ positive bags and ℓ− negative bags, the

mapping representation of the data set is defined as:
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[m(B+
1 ), . . . ,m(B+

ℓ+),m(B−
1 ), . . . ,m(B−

ℓ−)] =



S(x⃗1, B
+
1 ) . . . S(x⃗j, B

+
1 )

. . . . . . . . .

S(x⃗1, B
+
ℓ+) . . . S(x⃗j, B

+
ℓ+)

S(x⃗1, B
−
1 ) . . . S(x⃗j, B

−
1 )

. . . . . . . . .

S(x⃗1, B
−
ℓ−) . . . S(x⃗j, B

−
ℓ−)



(2.13)

In (2.13), each row represents a bag and each column represents the jth feature in the

mapped space.

Next, MILES apply the 1-Norm SVM [67], in the mapped feature space, to

find a linear classifier that discriminates between positive and negative bags using:

yi = sign
( C∑

j=1

wj ∗ S(x⃗j, Bi) + b
)
, (2.14)

In (2.14), wj is the weight associated with S(x⃗j, Bi) and b is a bias parameter.

MILES Testing: To test a new bag Bt, first MILES maps Bt by following the same

approach used to map the training bags. Then, it uses the learned parameters of the

1-Norm SVM to compute the label.

2.5.2 Feature Selection for Multiple Instance Learning

Although feature selection in traditional supervised learning has been researched

extensively, only few existing methods can be applied to Multiple Instance data. In

the following subsections, we review these methods.
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2.5.2.1 BP-MIP

In [11], the authors proposed a method to improve a MIL neural network, BP-

MIP [68], by incorporating two different feature selection methods: feature scaling

with Diverse Density [49] and feature reduction with principal component analy-

sis [69]. They referred to these two variations as BP-MIP-DD and BP-MIP-PCA

respectively. In particular, BP-MIP-DD uses the Diverse Density approach on the

training data to learn the feature weights. Then, it scales the features using the

learned weights and feeds them to the BP-MIP network. Alternatively, in BP-MIP-

PCA, principle component analysis is used to project the features, using a linear

transformation matrix, to a lower-dimensional feature space before feeding them to

the network.

2.5.2.2 MI-Adaboost

In [12], the authors proposed an algorithm that maps each bag onto a feature

vector using a set of instance prototypes. Then, an AdaBoost algorithm [70] was used

to select the relevant features and learn the classifier simultaneously in the mapped

feature space. More specifically, they followed [21] in considering all the instances in

the positive bags as instance prototypes. Moreover, to identify few instance proto-

types from the negative bags, they applied the k-means clustering [71] on instances

from all negative bags. The c cluster centers are then used as instance prototypes

that summarize all negative bags. Next, they followed [21] in mapping all the bags
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to the new (m+c) dimensional feature vector. They used

d(pt|Bi) = min
{
exp
(
− ||pt −Bi,j||2

σ2

)}
, Bi,j ∈ Bi (2.15)

to calculate the distance between a given instance pt and a given bag Bi. In (2.15),

Bi,j represents the instances of Bi and σ2 is a predefined constant.

Finally, a variation of Adaboost, with a weak linear classifier on the mapped

feature space was used to build a classifier and learn the feature weights simultane-

ously. This algorithm focuses on selecting relevant features from the mapped feature

vector and identifies the instances with higher representative power in the mapped

feature space as the instance prototypes.

2.5.2.3 MIRVM

Rayker et al. [13], proposed a Bayesian multiple instance learning algorithm

called MIRVM that identifies a subset of relevant features while learning (conceptually

related) classifiers simultaneously. They use a noisy-OR model and a logistic sigmoid

to calculate the probability of a target given the observed bags:

P (t|X) = 1−
∏
x∈X

(
1− σ(wTx)

)
(2.16)

In (2.16) the weight vector, w, is modeled using a Gamma prior. The optimization is

performed using the Newton-Raphson method. Feature selection is optimized using

type II maximum likelihood method.
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2.5.2.4 ReliefF-MI

In [17], the authors proposed a filter feature selection approach for the MIL,

called Relief-MI, which is an adaptation of the ReleifF [72] algorithm. Similar to

ReliefF, ReliefF-MI randomly samples bags from the training data. Then, for each

selected bag, it identifies the k nearest neighbors form the same class (nearest hits) and

the other classes (nearest misses). Next, it updates the feature scores (weights) based

on the distance difference between the nearest hits and nearest misses. Finally, using

the feature scores, the most discriminating features are selected and other features

are discarded.

In a similar fashion, HyDR-MI [18] has been adapted to MIL. HyDR-MI is a

hybrid feature selection algorithm that uses ReleifF as the filter component and a

genetic algorithm as the wrapper component in the learning process. The genetic

algorithm is used to optimize the search for the optimal feature subset using the

output of the filter component.

2.5.2.5 M3IFW

In [73], the authors adapted the maximum margin framework in the supervised

feature weighting area [74,75] and proposed a maximummargin MIL feature weighting

algorithm (M3IFW) to identify large classification margins in the weighted feature

space. The idea was to combine the search of positive prototypes and the calculation

of the weighting vector in a unified maximum margin framework.

The drawback of M3IFW is that it needs to optimize three unknown variables
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(the positive prototypes, the weighting coefficients and the classification margin). To

address this, the authors proposed a solution that optimizes one variable at a time

while fixing the other variables. This iterative alternative optimization is repeated

until the change in the objective function is less than a fixed threshold.

Similarly, in [15], the authors proposed a multiple instance feature-weighting

algorithm at the bag level. They adapted the three bag-level distances (minimal

Hausdorff, class-to-bag, and bag-to-bag) to design the bag-level feature weighting

method.

2.5.2.6 Feature Selection based on Dimensionality Reduction

There are a few studies that use dimensionality reduction in MIL to select a

subset of features [14, 76, 77]. For instance, in [14], the authors studied a dimension-

ality reduction algorithm using sparsity and orthogonality. The main idea was to

formulate an optimization problem where the sparse term appears in the objective

function and the orthogonality term is formed as a constraint. As the goal of these

algorithms is to reduce the dimensionality by mapping the original features to an-

other feature space, they are different from our focus which is feature selection in the

original feature space.

2.6 Deep Learning

Representation Learning is a set of techniques that allow the machine to au-

tomatically discover the representations used for detection or classification from the

raw data [78]. Deep learning methods are a type of representation learning based on
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Figure 2.1: Illustrations of a deep learning model

artificial neural networks. Deep learning finds abstract representations by using sim-

pler representations through successive layers of the network. In other words, deep

learning builds complex concepts out of simpler concepts [79].

Figure 2.1 illustrates how a deep neural network can learn the features to

represent the concept of an image. At the top layers, the model learns primitive low-

level features. For instance, in the first layer the model starts with raw pixels of the

image. In deeper layers of the network, higher level features are learned by combining

the simpler features learned in the earlier layers. For instance, in the second layer,

the model may be learning the edges of the input image and, in the third layer, more

abstract features (e.g., eye or ear of the cat) can be extracted. The output layer uses

a weighted combination of the high-level features to detect the category of the input

image.

Deep learning methods have made advances in many domains specially the

ones with high dimensional data such as computer vision [80–84], speech recognition
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[85–88], drug discovery [89,90], bioinformatics [91,92], medical image analysis [93,94],

and natural language processing [95–97].

2.6.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a type of neural network inspired

by cells in visual neuroscience [98]. CNNs have their roots in the neocognitron network

proposed by Fukushima and Miyake [99], which was inspired by the discovery of cells

in the visual cortex that are responsible for detecting light in receptive fields [100].

CNNs are designed for processing data in form of multiple arrays such as a

color image that contains three 2D arrays where each array represents a color channel

(RGB) [78]. A CNN uses convolution, a specialized type of linear filtering, to extract

visual features.

A typical architecture of a CNN is composed of a stack of convolutional layers,

activation functions, pooling layers, and fully-connected layers and is illustrated in

figure 2.2 and outlined in the following subsections.

Figure 2.2: Architecture of a typical CNN
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A CNN uses convolution operation in at least one of its layers. These convo-

lutional layers are used to extract representative features from the inputs in order to

detect local conjunctions of previous layer’s features [78].

In CNNs, a convolutional layer usually followed by a pooling layer. Pooling

layers replace the output of its previous convolutional layer with summary statistics

of the local regions to merge semantically similar features into one. This allows

detecting a motif when the relative positions of the features forming the motif vary

[78]. Moreover, using pooling layers, reduces the dimensionality of feature maps,

the computational cost, the memory usage, and the number of trainable parameters.

Reducing the number of network parameters makes the learned features invariant to

small transitions and controls the over-fitting.

The last few layers of a CNN are fully connected layers. They are used to

learn the classifier. The last fully connected layer, the output layer, computes the

class prediction. A typical output layer is a softmax layer that estimates the class

probabilities where the category with the highest probability is considered as the

predicted class. In a typical CNN, a differentiable loss function is used to perform

the optimization with gradient descent algorithm.

2.6.2 CNN Architectures

In the previous section, the typical convolutional neural network architecture

was discussed. Since the 1990s, various CNN architectures for numerous applications

have been proposed and developed [80,82–84,101–112]. These architectures are built

by making modifications in structural form, parameter optimizations, regularization,
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and development of new blocks and processing units. In particular, the most novel

ideas are developed by training deeper architectures [113]. This progress can be seen

in the decreasing error rate of ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC), where the top-5 classification error rate are reported for each architecture.

In this section, we review some of these popular architectures.

The LeNet architecture proposed by LeCun et al. [101] in 1998 is the most

well-known CNN architecture that was developed to recognize the handwritten digits

on the MNIST data set. Figure 2.3 depicts the architecture of LeNet. The AlexNet,

proposed by Krizhevsky et al. [80], has a similar architecture to LeNet with a larger

and deeper network. It was the first architecture that used a stack of convolutional

layers on top of each other. Moreover, AlexNet utilized two regularization techniques,

dropout and data augmentation, to reduce over-fitting.

Figure 2.3: LeNet Architecture

The GoogLeNet (also called Inception-V1), developed by Szegedy el al. [83],

uses a new level of layer organization in form of sub networks called inception mod-
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ules which is inspired by the Network in Network paper proposed by Lin et al. [114]

in conjunction with the theoretical work of Arora et al. [115]. Using inception mod-

ules reduces the number of training parameters and allows training deeper networks

(GoogLeNet has 12 times fewer parameters than AlexNet).

Simonyan et al. [81], from the Visual Geometry Group (VGG) research lab,

proposed easy and efficient CNN architectures with different numbers of trainable

layers. They showed that powerful models with smaller number of parameters and

lower computational complication can be built by using the stack of 3×3 convolutional

filters. Moreover, they showed that adding more layers increases the performance of

the network. Due to their deep, homogeneous, and simple architectures, VGG models

have been widely used as the basis of new models in transfer learning [113].

Residual Network (ResNet) proposed by He et al. [82], is a very deep CNN

architecture that is composed of 152 layers. In ResNet, the input of a layer is con-

nected to the output of a layer located in a higher level. These connections, shortcut

connections, makes the optimization process faster and easier. Figure 2.4 illustrated

the shortcut connections.

Figure 2.4: A building block of residual learning

High-Resolution Network (HRNet) [102, 103], unlike common architectures

(e.g., VGG, ResNet), maintains the high-resolution representations through the whole
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process on a multi-stage architecture. HRNet has been used in several applications

in object detection, semantic segmentation and human pose prediction [113].

Inception-ResNet [104] and Inception-v4 [105] are the upgraded versions of

Inception-V1/Inception-V2 architectures. Highway networks [106] is a novel archi-

tecture designed to ease the gradient-based training of very deep networks by al-

lowing unimpeded information flow across several layers on information highways.

DenseNet [107, 108] is designed to overcome the vanishing gradient problems by fol-

lowing the same direction as ResNet and Highway networks. ResNext, also called

Aggregated Residual Transform Network [112], is an enhanced version of the Incep-

tion network. WideResNet [109] is designed to utilize the power of residual modules

by making the ResNet wider instead of deeper. Pyramidal Net [110] overcomes the

ResNet learning interference problem by slowly extending the residual units’ width

to cover the most visible places. Xception [84] utilized modified version of inception

modules by making them wider by using 3× 3 filters followed by a 1× 1 filter. Cap-

suleNet [111] is using a type of structures called capsules to detect the presence of

objects at a location considering size, orientation, and perspective of the input image.

A comprehensive review of these architectures can be found in [113].

2.6.3 Transfer Learning and Fine Tuning

There are two main obstacles in training a deep neural network for a new

application. First, it requires substantial amounts of data to assure the convergence

of model’s loss function without over-fitting. Second, training a deep neural network

from scratch is a computationally expensive task that requires time and resources.
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One solution, is to use a pre-trained network from a similar domain as an initial

model to train and learn a new model for the target application [116]. This solution,

called transfer learning, is based on the assumption that the information obtained

in a domain with a sufficiently large training data can be used in another domain of

interest, where the data may be in a different data distribution [117].

Figure 2.5: Reusing pre-trained layers [1]

In general, transfer learning is used to improve a model from one domain by

transferring information learned from a similar domain [116]. Transfer learning leads

to speeding up the training process of the new model considerably, and it requires

much less data for the training [1]. A typical approach for transfer learning in building

new deep neural networks is to reuse some layers from a large-scaled trained models

as the base. Specifically, the transferred layers are used to extract features. By fixing

32



the base layer weights, and training the network to learn low-level weights of the

trainable layers, the classifier can learn a new model that fits the new data while

minimizing the risk of over-fitting. This approach is illustrated in figure 2.5.

An optional step in transfer learning is fine-tuning, where the features learned

by the top base layers are adapted to the new data. This process is performed by

allowing the model to tweak the weights of one (or more) of top base layers, i.e.,

hidden layer 3 in figure 2.5, during the learning process. Fine-tuning often improves

the performance of the model by adapting the learned features.

2.6.4 Visualization Methods

Visualization methods are widely used to explain AI models [118] including

deep learning models [119]. In deep neural networks, visualization methods are sci-

entific approaches used to express an explanation for the network’s behavior by high-

lighting the characteristics of an input that strongly influence the output. A good

summary of the foundation methods is available in [120]. In the following subsections,

we outline two widely used visualization approaches.

2.6.4.1 Class Activation Mapping

Class Activation Mapping (CAM) [2] is a visualization method that uses Global

Average Pooling (GAP) in a CNN architecture. CAM identifies a class activation map

for a particular category, that indicates the important regions of an image used by

the CNN to identify that category [2]. The procedure for generating these maps is

illustrated in figure 2.6.
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Figure 2.6: Overview of CAM [2]

Let K denote the number of feature maps in the last convolutional layer, and

Ak ∈ IRu×v indicate the kth feature map with width u and height v. These feature

maps are aggregated and resulted into a score, yc, for each category c:

yc =
K∑
k

wc
k

u∑
i

v∑
j

Ak
ij (2.17)

Let Lc
CAM ∈ IRu×v indicate the class activation map for class c. CAM computes

Lc
CAM by calculating the linear combination of the final feature maps using the learned

weights of the final layer:

Lc
CAM =

K∑
k

wc
kA

k (2.18)

In (2.18), Lc
CAM is the weighted linear sum of the presence of the visual patterns at dif-

ferent spatial locations. By up-sampling Lc
CAM to the input image, the discriminative

regions of class c can be identified.

CAM cannot be applied to networks with multiple fully-connected layers at

the end of their architectures. This is the main limitation of CAM. In [3], the authors
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proposed a solution to make CAM applicable to such networks by replacing the fully-

connected layers with convolutional ones and re-training the network.

2.6.4.2 Gradient-weighted Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) [3, 121] is a gener-

alization of CAM that produces a localization map of the important regions of an

input image by using the class-specific gradient information flowing into the final

convolutional layer of a CNN [121]. Grad-CAM can be used to explain the CNNs

output. Figure 2.7 outlines the main steps of Grad-CAM.

Figure 2.7: Overview of Grad-CAM [3]

Grad-CAM uses a generalized version of equation (2.18) to compute the class

discriminative localization map denoted by Lc
Grad−CAM ∈ Ru×v. It computes Lc

Grad−CAM

using:

Lc
Grad−CAM ≊

K∑
k=1

αc
kA

k, (2.19)
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where αc
k is the neuron importance weights that is estimated by computing the gradi-

ent of the score for class c, yc, with respect to the feature maps Ak of a convolutional

layer; i.e., ∂yc

∂Ak . Thus, α
c
k is calculated using:

αc
k =

1

uv

u∑
i=1

v∑
j=1

∂yc

∂Ak
ij

(2.20)

where ∂yc

∂Ak
ij
is the linear effect of the pixel located at (i, j) in the kth feature map in

the cth class. The weight αc
k represents the discriminative power of feature map Ak

for the target class c [121].

Then, a ReLU function is applied to a linear combination of the maps that

considers only the features with positive influence on the target class. In particular,

ReLU is applied to identify the pixels with positive values whose intensity should be

increased to increase yc and ignore the pixels with negative values that are likely to

be the informative features of the other classes [121].

Lc
Grad−CAM = ReLU

(
K∑
k=1

αc
kA

k

)
∈ Ru×v (2.21)

In (2.21), Lc
Grad−CAM has the same dimension (u× v) as the last convolutional

layer. To visualize Lc
Grad−CAM of the original image, it needs to be up-sampled.
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CHAPTER 3

LOCAL FEATURE SELECTION FOR MULTIPLE INSTANCE DATA

In this chapter, we propose a new feature selection algorithm for MIL inspired

by the concept of local feature selection proposed in [9] for single instance learning.

Unlike traditional feature selection algorithms, where a global set of relevant features

is learned for the whole data set, our proposed method learns a potentially different

relevant set of features for every sample (i.e., bag). We call our proposed algorithm

Multiple Instance Local Salient Feature Selection (MI-LSFS).

3.1 Local Feature Selection for MIL

In this section, we outline the main steps of our proposed MIL feature selec-

tion method, which is an extension of lLFS [9] (outlined in section 2.4) to the MIL

framework. To extend lLFS to MIL, we need to generalize it to use bags of instances

instead of standard feature vectors. We consider bags as the representatives of local

regions in the sample space. The details of our proposed feature selection method are

discussed in the following sub-section.
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3.1.1 Multiple Instance Local Salient Feature Selection

Let f (i) ∈ {0, 1}M denote the status of the features for the region centered at

bag Bi, where M is the dimensionality of the instances in the original feature space.

Let f
(i)
m denote the selection status of the mth feature of Bi. If the mth feature of Bi

is selected, then f
(i)
m is set to 1, otherwise it is 0. We should note here that if f

(i)
m

is selected for Bi, then this feature is selected for every instance in Bi. Let B(i) be

the original values of the Bi instances. We define B
(i)
p as the projection of the Bi

instances onto the subspace of features represented by f (i).

Figure 3.1: Projection of Bi into f⃗ (i). In this example, Bi has five instances and

10 features. B
(i)
p is the projection of the Bi instances onto the subspace of features

represented by f⃗ (i).

Figure 3.1 illustrates an example of computing B
(i)
p . In this example, bag Bi

consists of five instances (x⃗i,1, . . . , x⃗i,5), where each instance has 10 features. f⃗ (i)

indicates the selection status of Bi’s features. Thus, f⃗
(i) ∈ {0, 1}10. For this example,

we assume that features 1, 4, 5 and 8 of Bi are selected. The projection of Bi is

calculated by only considering the selected features in f⃗ (i).

Using the above definitions, we restate the goal of feature selection for MIL as
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finding f (i) for each Bi such that by projecting all instances of all bags onto f (i), the

clustering behavior in the neighborhood of B
(i)
p is optimum with respect to the two

following criteria:

1. Some bags with the same label as Bi should have some instances that are as

close as possible to some instances of Bi in the projection space defined by f (i).

2. All instances of a bag that has a label different from that of Bi should be located

as far as possible from all instances of Bi in the mapped space defined by f (i).

To formulate the above optimization, we need a function that computes the

distance between two bags. Typically, this distance is computed by considering the

distances between their instances. Treating each bag as a set of M dimensional

vectors, any function that calculates the distance between two sets of points can

be used to define the distance between bags. One commonly used measure is the

Hausdorff distance [19]. In this thesis, we use a variation of the Hausdorff distance,

called the minimal Hausdorff distance. This distance, HD(Bi, Bj), calculates the

minimal Hausdorff distance between two given bagsBi andBj with instances {x⃗i,k}|Bi|
k=1

and {x⃗j,l}
|Bj |
l=1 using:

HD(Bi, Bj) = min
x⃗i,k∈Bi

x⃗j,l∈Bj

||x⃗i,k − x⃗j,l||. (3.1)

Furthermore, we define HD(Bi, Bj, f
(i)) as the distance between the projection of

bags Bi and Bj onto the subspace represented by f (i); i.e.,

HD(Bi, Bj, f⃗
(i)) = min

x⃗i,k∈Bi

x⃗j,l∈Bj

||x⃗i,k · f⃗ (i) − x⃗j,l · f⃗ (i)||. (3.2)
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The proposed Multiple Instance Local Salient Feature Selection (MI-LSFS)

algorithm optimizes the same objective functions defined in (2.1) and (2.2), but re-

placing D(Si, Sj) with HD(Bi, Bj) and D(Si, Sj, f
(i)) with HD(Bi, Bj, f

(i)). Thus,

we restate the objective functions as:

U1(f
(i)) =

1

Ni − 1

∑
j;yj=yi;j ̸=i

g
(
HD(Bi, Bj, f

(i)), σ(i), λ
)

(3.3)

and

U2(f
(i)) =

1

N −Ni

∑
j;yj ̸=yi

g
(
HD(Bi, Bj, f

(i)), σ(i), λ
)
. (3.4)

In (3.3) and (3.4), N is the number of training bags, Ni is the number bags with the

same label as Bi, and g is the logistic function. The two other parameters, σ(i) and λ,

are the logistic growth rate and the regularization parameter. Optimization of (3.3)

and (3.4) can be formulated as optimizing:

minf (i) U1(f
(i))

maxf (i) U2(f
(i))

s.t.


f (i) ∈ {0, 1}M

1 ≤ 1Tf (i) ≤ α

(3.5)

By restricting 1Tf (i) between 1 and α, the number of selected features is set to be at

least 1 and at most α features.

In (3.3) and (3.4), the logistic function g,

g(z, σ, λ) =
1

1 + exp(−σz)
− 0.5 + λz, (3.6)

transforms the distance between bags such that closer bags will have more effect on

the objective function and farther bags will have minimal effect. In (3.6), the purpose
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of the linear term λz is to give a chance to the potentially relevant bags that are far

from B
(i)
p to get closer to B

(i)
p in subsequent iterations of the optimization process.

3.1.2 Optimization

One way to solve the multi-objective optimization problem in (3.5) is to use

the Pareto optimality concept [47] and combine the objective functions in (3.5) into

a single one: 

min
f
(i)
β

U1(f
(i)
β )

s.t.



f
(i)
m,β ∈ [0, 1]

1 ≤ 1Tf (i) ≤ α

U2(f
(i)
β ) ≥ βϵ

(i)
max.

(3.7)

In (3.7), β is a set of constraint values, in the range of [0,1], that control the number

of Pareto points, f
(i)
β represents the selected features of Bi for a given β, and ϵ

(i)
max is

the maximum feasible value of U2 for the given sample Bi that is computed using:

ϵ
(i)
max = maxf (i) U2(f

(i))

s.t.


0 ≤ f

(i)
m ≤ 1,m = 1, ...,M

1 ≤ 1Tf (i) ≤ α.

(3.8)

Optimization of (3.7) leads to a solution for every value of β. The feasibility of

this approach is discussed in details in [9]. Next, a randomized rounding process [47]

is used to convert each relaxed solution f
(i)
β into a binary solution f

∗(i)
β . Each element

of f
∗(i)
β represents the selection status of its corresponding feature (i.e., 1 if the feature

is selected and 0 if it is not).

41



The steps of MI-LSFS algorithm are summarized in algorithm 2. MI-LSFS

identifies different solutions, f
∗(i)
β , for each given bag Bi. Then, one of these solutions

needs to be identified as the optimal solution, f ∗(i), for bag Bi. In the next subsection,

we describe the steps to find f ∗(i) for each given bag Bi.

Algorithm 2: MI-LSFS

Input:
1 B : Bags
2 Y : labels
3 N : Number of Bags
4 M : Number of features
5 α : Controls the maximum number of features to be selected
Output:

6 {f ∗(i)}, i = 1, ..., N : selected features for each sample
Initialization:

7 f
(i)
β = 1

α
(1, ..., 1), i = 1, ..., N

8 λ = 0.01
α

9 β = [0, 1]
10 for i = 1 to N do
11 Compute σ(i) by solving (3.14);

12 Compute ϵ
(i)
max by solving (3.8);

13 for β = 0 to 1 do

14 Compute f
(i)
β by solving (3.7);

15 Randomized rounding process of f
(i)
β to obtain binary feature

vector f
∗(i)
β ;

16 Find f ∗(i) and r(i) using algorithm 3;

3.1.3 Identifying the Optimal Solution for each Bag

For each bag Bi in the data, algorithm 2 identifies a solution f
∗(i)
β for each

value of β. Next, we propose using cluster validity measures to assess the quality of

the different solutions and identify the optimal one. The selected features associated

with the optimal solution, f ∗(i), will be considered the relevant features of bag Bi.
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For cluster validity, we use the impurity and Matthews correlation coefficient (MCC)

[20] measures to assess the goodness of each cluster of bags. Specifically, we generalize

the standard impurity [122] to MIL and define it as the ratio of the number of bags

with different class labels to the number of bags with the same class label. Formally,

for the cluster identified around bag Bi and for a maximum distance threshold d, we

define the impurity as:

IMP (i, d) =

∑
j=1,..,N ;i ̸=j

(1− I(y(i), y(j)))× step(HS(Bi, Bj, f
∗(i)
β ))∑

j=1,..,N ;i ̸=j

I(y(i), y(j))× step(HS(Bi, Bj, f
∗(i)
β ))

(3.9)

where

HS(Bi, Bj, f
∗(i)
β ) = d−HD(Bi, Bj, f

∗(i)
β ). (3.10)

In (3.9),

step(z) =


1, if z ≥ 0

0, Otherwise,

(3.11)

and

I(x, y) =


1, if x = y

0, Otherwise.

(3.12)

The second performance measure, MCC, is a balanced measure of the binary

classification quality and can be computed using:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (3.13)

In (3.13), TP , TN , FP and FN are the true positives, true negatives, false positives

and false negatives, respectively. For the purpose of calculating MCC, these measures
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are calculated based on the local cluster centered at Bi with a radius d, which can be

considered as a weak classifier. Specifically, given the local region of a bag Bi with a

radius d, and a testing bag Bt, we label Bt with the same label as Bi if it falls into the

local region of Bi. Otherwise, it is predicted as others. Using this approach, we label

every bag in the training data (Bt ∈ B where B is the set of all training bags). Next,

using the predicted labels and the true label of the bags, we compute the confusion

matrix. Finally, we use (3.13) to calculate the MCC value. Let MCC(i, d) denote

the MCC value for the local region centered at bag Bi with a radius d.

Algorithm 3: Finding the best Beta value for the MI-LSFS algorithm

Input:
1 Bags : Bags of instances
2 Y : Bags labels
3 N : Number of Bags
4 i : Bag index

5 f
∗(i)
β , β = [0, 1] : Learned feature weights for bag i using multiple

β values
6 impurity threshold : maximum value of impurity
Output:

7 f ∗(i) : selected features for Bi

8 r(i) : radius of cluster centered at Bi

9 for β = 0 to 1 do

10 D = unique distances of D(Bi, Bj, f
∗(i)
β ) for i ̸= j;

11 for d ∈ D do
12 IMPβ(i, d) = IMP (i, d) using (3.9);
13 MCCβ(i, d) = MCC(i, d) using (3.13);

14 Find d and β s.t. IMPβ(i, d) ≤ impurity threshold with the highest
MCCβ(i, d) value;

15 f ∗(i) = f
∗(i)
β ;

16 r(i) = d;

In algorithm 3, we summarize the steps used in finding the optimal solution

for a given bag Bi denoted by f ∗(i). First, for a given bag Bi, we project the instances
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of all bags using f
∗(i)
β and calculate the distance of every bag in the training data

to Bi in the projected space using (3.2). Let D denote the set of unique distances

to Bi in the projection space of f
∗(i)
β . Then, we search the projection space to find

clusters of bags, that are within a distance d ∈ D from Bi, that have the closest

impurity that is smaller than a specified impurity threshold. Since the first part of

the MI-LSFS (algorithm 2) generates |β| sets of potential relevant features for each

bag, the clustering part will generate |β| different solutions. Finally, we select the

solution with the highest MCC value as the optimal one, and we set f ∗(i) as the

optimal set of selected features, and r(i) as the radius of the optimal cluster in the

projected space f ∗(i).

Since the MCC, computed using (3.13), considers the four confusion matrix

measures, the selected region can be more informative than the one identified using

only the impurity measure. Also, by using the impurity to cut off the regions before

calculating the MCC, we reduce the risk of over-fitting since the regions include false

positive values.

In figure 3.2, we illustrate the identification of the local regions of two sample

bags. In these illustrations, there are three positive bags and three negative bags.

Each bag has a few instances that are displayed using different shapes. Instances

from positive bags are displayed in orange and instances from negative bags are shown

in blue. Figure 3.2(a) shows the local region of a sample positive bag B1 where its

instances are depicted with star. All the instances are shown in the projected feature

space using f1 and f4, which are the relevant features of B1. These are the features

that are activated in f ∗(1). The local region of B1 centered at one of its instances
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(a) (b)

Figure 3.2: Sample examples for the local clusters: (a) clustering of sample bag B1

where f1 and f4 are its relevant features. (b) clustering of sample bag B4 where f3

and f5 are its relevant features. Instances of positive and negative bags are color-

coded with orange and blue, respectively, and instances of each bag are shown in a

different shape.

with a radius r(1) is shown with a gray dashed line. By optimizing the MI-LSFS

objective function, we expect that some positive instances get as close as possible

to the center of this cluster and negative instances get as far as possible from this

cluster. However, we allow some impurity (i.e., the blue square in figure 3.2(a)) in

the cluster. We should mention here that a positive bag contains both positive and

negative instances. Therefore, we expect that the negative instances of positive bags

to be distributed anywhere outside the cluster. Figure 3.2(b) shows the local region

of a sample negative bag B4 centered at one of its instances with a radius r(4) where

only features f3 and f5 are activated in f ∗(4). The instances of B4 are shown with
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triangles. The local region of B4 is shown with a gray dashed line.

3.1.4 Parameters of the Logistic Function

The logistic function in (3.6) has two parameters, λ and σ(i), that need to be

assigned. The parameter σ(i) is calculated based on the point from Bi that sits on

the knee point of the logistic function [9]. Formally, σ(i) is calculated using (3.14)

and the initialization value of the selected features, f
(i)
β , where the value of 0.47 is set

based on the knee point of the logistic function in (3.6).
1

1+exp(−σ(i)φ(i))
− 0.5 = 0.47

φ(i) = maxj=1..N,j ̸=i{DH(Bi, Bj, f
(i))},

(3.14)

In (3.14), λ is set to the default value of 0.01/α at the initialization step.
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CHAPTER 4

APPLICATIONS OF MI-LSFS

In this chapter, we propose various applications that take advantage of the

locally learned features. MI-LSFS treats each bag as a local region in the feature

space and learns a subset of relevant features for each bag. Since common MIL

classifiers cannot handle data samples with different sets of features, they cannot

take advantage of the valuable information learned by MI-LSFS. To address this

limitation, we propose an efficient MIL classifier that incorporates the information

learned by MI-LSFS. Our MIL classifier, called MILES-LFS, is inspired by the well-

known MILES [21] algorithm. MILES-LFS is a robust MIL classifier that improves

the performance and efficiency of the MIL classification task.

A second application of our local feature selection that we are proposing is

the investigation and exploration of the features learned by a Convolutional Neural

Network (CNN). In particular, a CNN learns a high dimensional set of features and

performs classification using these learned features. This works as a black box and

explaining and illustrating what the model has learned is an active research area

[121, 123–125]. We propose using our MI-LSFS algorithm to develop a method that

can explain the decisions of a CNN model. In particular, we use the local feature

selection approach to identify and visualize the relevant features of each target sample.
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We also propose a visualization method, called Gradient-weighted Sample Activation

Map (Grad-SAM), that utilizes the locally selected features of each target sample to

highlight its salient parts.

The third application of our MI-LSFS is to explain the decisions made by a

trained machine learning model. Using the fact that local feature selection identifies

the relevant features for every object, we propose a new approach that can be trained

to identify the features that lead to the correct and incorrect classification of each

sample.

4.1 Classification of Multiple Instance Data

MI-LSFS learns a set of relevant features for each bag. Since these sets can

vary from one bag to another, this information cannot be used within standard MIL

classification algorithms. In this section, we propose a new MIL classification algo-

rithm, inspired by MILES [21], that can explore the information learned by MI-LSFS.

The proposed classifier, called MILES-LFS, adds two main steps to MILES. First, it

only uses the identified relevant features of the bag to project it onto the prototype

space. Second, instead of using all training instances as prototypes, it selects only a

subset of bags and a subset of relevant instances from each bag.

As outlined in Algorithm 2, for each bag Bi, MI-LSFS learns an optimal set

of relevant features, f ∗(i), and a local region with a radius r(i) centered at Bi, in the

mapped space. The cluster of bags is optimized with respect to impurity and MCC.
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Let Clusti denote this cluster; i.e.,

Clusti = {Bj ∈ B
j ̸=i

| HD(Bi, Bj, f
∗(i)) ≤ r(i)}. (4.1)

In (4.1), B is the set of all training bags. Using this information, we identify the

most representative bags and their representative instances. First, we assign a score

to each bag Bi based on the impurity measure of its cluster Clusti. Next, we assign

a score to each instance {x⃗i,k}|Bi|
k=1 in Bi based on its proximity to all bags in Clusti.

Specifically, we compute

Score(x⃗i,k) =
∑

Bj∈Clusti

I
(
HD(x⃗i,k, Bj, f

∗(i)), HD(Bi, Bj, f
∗(i))
)

(4.2)

where I is defined in (3.12).

Using the bags’ scores, we identify a subset of relevant prototypes by selecting

the NB bags with the lowest impurity. For each selected bag we identify its NI

instances with the highest score computed using (4.2). Let P denote this set of

selected prototypes, where |P| = NB × NI . Each prototype xj ∈ P inherits the

optimal set of relevant features, denoted f ∗(j), and cluster radius, denoted r(j), of the

bag it originated from.

Next, we compute the similarity between each bag, Bi, and each instance

prototype, xj ∈ P , using

S(x⃗j, Bi) = max
x⃗i,k∈Bi

{
exp
(
− ||x⃗i,k ∗ f ∗(j) − x⃗j ∗ f ∗(j)||2

α.r(j)

)}
, (4.3)

where α is a constant scaling factor.

We should note here that in (4.3), we consider only the features selected by

MI-LSFS for each target concept and we normalize the distance by the radius of
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the region centered at the target concept (r(j)). Thus, this measure represents the

normalized similarity of Bi to the local region centered at target concept x⃗j.

Next, we map the training data to the new space defined by the selected

instance prototypes, P , and the locally selected features using:

m(Bi) = [S(x⃗1, Bi), . . . , S(x⃗|P|, Bi)]. (4.4)

The training data set, consisting of multiple instance data, are then mapped to stan-

dard single instance features in a |P| dimensional space and represented as:

[m(B+
1 ), . . . ,m(B+

ℓ+),m(B−
1 ), . . . ,m(B−

ℓ−)] =



S(x⃗1, B
+
1 ) . . . S(x⃗|P|, B

+
1 )

. . . . . . . . .

S(x⃗1, B
+
ℓ+) . . . S(x⃗|P|, B

+
ℓ+)

S(x⃗1, B
−
1 ) . . . S(x⃗|P|, B

−
1 )

. . . . . . . . .

S(x⃗1, B
−
ℓ−) . . . S(x⃗|P|, B

−
ℓ−)



. (4.5)

In (4.5), ℓ+ and ℓ− represent the number of positive and negative bags in the training

data set. Each row represents a bag and and each column represents a feature in

the mapping space (a concept). Finally, to learn the classifier, we apply the 1-Norm

SVM [67] to the mapped data.

To test a new bag, we first map it to a standard feature vector using (4.4).

Then, we test it using the learned SVM classifier. Figure 4.1 illustrates our proposed

MILES-LFS.
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Figure 4.1: Architecture of the proposed MILES-LFS classifier

4.2 Using MI-LSFS to Explain CNN Decisions

Convolutional Neural Networks have been successfully applied to many com-

puter vision applications. However, CNNs, like other deep learning models, work as

a black box, and they are often criticized for the lack of transparency in interpreting

the learned features and explaining the outcome of the model [126]. Moreover, due

to the good performance of deep CNN models, instead of using handcrafted features,

they are commonly used as feature extractors, especially in computer vision appli-

cations. However, interpreting the models that utilize the extracted features can be

challenging. Recently, there has been a significant increase in developing explainable

deep learning techniques to interpret the models.

Scientific visualization techniques [2, 3, 121, 127, 128] are widely used in inter-

preting the features learned by deep models. They highlight the characteristics of
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an input that are strongly correlated to the decision of a network (i.e., predicted

class) [120]. However, interpreting a subset of features through a visualization ap-

proach is not trivial. In this section, we propose a gradient-based visualization method

that utilizes the locally selected features for a target sample and visualizes its salient

parts. In particular, using our proposed visualization technique, we can validate the

performance of our local feature selection method in identifying the salient features

that are extracted from a deep CNN through visualization.

We should mention here that few Multiple Instance Convolutional Neural Net-

works have started to emerge lately [129–133]. However, no standard approach have

been established yet. Moreover, although our MI-LSFS has been developed for MIL,

we can apply it to single instance data by treating the samples as single instance

bags. Thus, we perform MI-LSFS on the extracted features from the fully connected

layers by treating them as single-instance bags.

We perform the following steps to investigate a CNN and visualize the local

discriminative segments of an input image. First, we extract the features from the

deep model to form the training data set. Next, we use our MI-LSFS algorithm

to identify a subset of most relevant features for each sample. Finally, we apply our

visualization method using the learned features to display the locally significant parts

of the input image. Our proposed visualization method is described below.

Grad-CAM, as outlined in section 2.6.4.2, obtains the class-discriminative lo-

calization map for any class c by computing the gradient score for class c with respect

to the given feature map Ak of a convolutional layer k [121]. In this work, we propose

a generalization of Grad-CAM that identifies the discriminative map of a given sample
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by computing the gradient score of only the sample’s locally selected features. We will

show that visualization of this map highlights the significance of its locally selected

salient features. Our proposed visualization approach, called Gradient-weighted Sam-

ple Activation Map (Grad-SAM), computes the activation map for each sample. Fig-

ure 4.2, summarizes the steps of Grad-SAM.

Figure 4.2: Overview of Grad-SAM. The sequence of steps are illustrated by numbers

in the circles. 1- Feeding the input image into the trained CNN. 2- Extracting the

features from the fully connected layer. 3- Identifying the salient features by applying

MI-LSFS. 4- Computing the weight of each feature map in the target convolutional

layer for each selected feature. 5- Calculating the feature maps that indicate the

importance of each selected feature. 6- Computing the linear combination of feature

maps. 7- Up-sampling and visualizing the results.
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Let Lℓ
f denote the fth feature from layer ℓ and let Ak represent the kth fea-

ture map of the given convolutional layer. Similar to Grad-CAM, we first calculate

the gradient of Lℓ
f with respect to the elements of feature map Ak ∈ Ru×v at the

given convolutional layer. Then, we average pool these gradients to obtain αℓ,f
k , the

importance of feature map Ak for Lℓ
f ; i.e.,

αℓ,f
k =

1

Z

u∑
i

v∑
j

∂Lℓ
f

∂Ak
ij

, (4.6)

where Z is a normalization factor that is set to the total number of pixels in feature

map Ak (i.e., u× v).

After computing the weights of feature map, αℓ,f
k , we calculate the importance

of feature Lℓ
f , denoted by Lℓ

f , by computing the weighted combination of the forward

activation maps; i.e.,

Lℓ
f =

K∑
k=1

αℓ,f
k Ak. (4.7)

In (4.7), Lℓ
f ∈ Ru×v. Finally, we calculate the linear combination of feature maps

Lℓ
f , f ∈ FSx followed by a ReLU function, where FSx is the set of selected features

for sample x. In other words, we calculate the localization map of a given sample x

by considering only its selected features in the computation. Thus, we have:

Lℓ,FSx

Grad−SAM = ReLU

( ∑
f∈FSx

wℓ
fL

ℓ
f

)
, (4.8)

where Lℓ,FSx

Grad−SAM ∈ Ru×v is the localization map. To visualize Lℓ,FSx

Grad−SAM of the

original image, it needs to be up-sampled.

We should mention here that Grad-SAM, similar to Grad-CAM, can be ex-

tended for any convolutional layer. However, the patterns learned in the early layers
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of a CNN model are more general (low level features), while the later layers learn

more abstract patterns (high level features). Therefore, visualization techniques are

typically applied on the higher layers of a deep CNN.

Figure 4.3 illustrated an example of Grad-Sam visualization, where MI-LSFS

selected 16 features out of the total 128 features for the input image. The 16 selected

features were used to highlight the important regions of the input image. In this

example, the eyes of the cat are the most important segments of the image.

Figure 4.3: An example of applying Grad-SAM. First, using the trained CNN, we

extract the features for the input image. Next, we apply MI-LSFS to identify the

most discriminative features for the given input. For this example, 16 features out of

the total 128 features are selected. Finally, we use Grad-SAM to visualize the selected

features where it highlights the eyes and forehead of the cat.

4.3 Using MI-LSFS to Explain the Decision of a Classifier

Understanding the behavior of a classifier and the reasons for its correct or

incorrect prediction is crucial in designing safe and explainable machine learning
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systems. However, most of the efforts in designing machine learning algorithms have

focused on improving the performance of models while understanding the behavior

of trained models received less attention [134,135].

The standard approach in accessing the trustworthiness of the prediction made

by a model is to use the confidence score of the classifier. Researchers have proposed

alternative measures to enhance this process. For instance, the trust score, proposed

by Jiang et al. [134], assesses whether the prediction of a classifier for a test example

can be trusted or not by calculating a ratio of distances between the high-density set

of samples from the target class and a different class. While these methods are helpful

to measure the trustworthiness of the classifier, they do not provide an explanation

to interpret the result other than the score.

In [134–138], researchers have proposed and developed tools to explain the

classifiers’ predictions. For instance, LIME [135], explores the sampled instances of

the local region of a sample and tries to form a linear boundary to separate the classes

to find a simpler explanation of the decision made by a complex classifier. However,

they consider all the features to form the neighboring samples. In the following, we

propose an approach to interpret and explain the decision made by a given classifier.

In particular, we use our MI-LSFS to identify relevant features of each sample that

lead to the correct or incorrect classification of each sample.

4.3.1 Classifier Explanation by Local Feature Selection

Let D = {(xi, yi)}Ni=1 denote the training data where xi and yi are the observa-

tion and its label, respectively. Let h(xi) = ŷi be the classifier that has been trained
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Figure 4.4: Overview of our local classifier explanation. First, we use the trained

classifier to predict the labels of the input samples. Next, we form the confusion

matrix and assign a label to each sample (i.e., TP, FP, TN, or FN). Using the obtained

labels and samples, we form a data set and apply MI-LSFS on that. Finally, we use

the selected features of each sample to explain the decision made by the classifier.

on D where ŷi denotes the predicted label for sample xi. Next, by comparing the

predicted labels with the ground truth labels, we form the confusion matrix. With-

out loss of generality, in the following we assume binary classification. In this case,

we can split the data into four categories using the confusion matrix. In particular,

we assign a label that indicates whether the sample is a True Positive (TP), False

Positive (FP), True Negative (TN), or False Negative (FN). We denote the new label

assigned to sample i by yi
′ and we form a new data set D′ = {(xi, yi

′)}Ni=1.

To analyze D′, we perform our MI-LSFS on D′ and obtain locally informative
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features for each sample. In particular, we are interested in investigating the features

responsible for assigning a sample to a particular class (i.e., TP, FP, TN, and FN).

Finally, we use the learned features of each sample to explain the classifier prediction

by presenting a visual representation to understand the relationship between the input

sample and the model’s prediction [135]. The intuition is that by having the labels

assigned based on the classifier prediction, the selected features will demonstrate

locally important features for the assigned class, explaining why a sample is classified

correctly or incorrectly by classifier h.

For instance, if a sample is predicted as a False Positive, its locally selected

features can explain why it is similar to the FP class. These steps are illustrated in

figure 4.4. We call our proposed approach Classifier Explanation by Local Feature

Selection (CE-LFS).

(a) (b)

Figure 4.5: Toy examples of CE-LFS. (a) scatter plot of two features f1 and f2. The

two classes are separable using these two features. (b) scatter plot of features f1, f2,

and f3 where four samples are misclassified because of f3.
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4.3.2 Toy Example of CE-LFS

A toy example of applying CE-LFS is illustrated in figure 4.5. In this example,

as it is illustrated in figure 4.5(a), the two classes are separable in the two dimensional

feature space (i.e., f1 and f2). We added another feature, f3, to the data set with

the same distribution, but we adjusted it for some of the samples such that the

classifier assigned them to the wrong class (figure 4.5(b)). We performed kNN on

the 3-dimensional data set, and four samples were classified incorrectly. Next, we

performed CE-LFS using the classification results.

TABLE 4.1

Summary of learned relevant features for some samples from the toy data set

Sample Class Predicted

Class

Learned relevant features

f1 f2 f3

Sample-1 1 1 *

Sample-2 1 1 * *

Sample-3 2 2 * *

Sample-4 2 2 *

Sample-5 1 2 *

Sample-6 1 2 *

Sample-7 2 1 *

Sample-8 2 1 *

Table 4.1 illustrates the results of CE-LFS for a few samples of the toy data set.

For each sample, we showed its class, predicted class, and its learned relevant features.

For instance, sample-1 is predicted correctly as class-1, and f1 is its learned relevant
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feature. In other words, f1 explains the reason that sample-1 is classified correctly as

class 1. Similarly, sample-3 is classified correctly as class-2 due to features f2 and f3.

In other words, in the feature space formed by f2 and f3, sample-3 is closer to class-2

samples than class-1 samples. Sample-5, one of the samples that we adjusted its f3,

is classified incorrectly as class-2 due to feature f3. The same explanation is valid for

samples 6, 7, and 8.

We should note that although our MI-LSFS has been developed for MIL, we

can apply it to single instance data by treating the samples as single instance bags.

Thus, as in section 4.2, we validate CE-LFS for single instance data. The extension

of that for MI data is straight forward.
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we illustrate the performance of our proposed methods on

synthetic and real benchmark data sets. First, we use synthetically generated data,

with known truth about relevant/irrelevant features for each sample, to demonstrate

the performance of MI-LSFS in selecting the correct set of locally discriminative

features. Next, to visualize the selected features and explore our method’s explain-

ability power, we generate testing data sets using the well-known MNIST data [139].

Finally, to validate the effectiveness of the information learned by MI-LSFS to select

representative bags/instances as potential target concepts and the performance of the

proposed MILES-LFS classification algorithm, we compare its accuracy and efficiency

to MILES using benchmark MIL data sets.

Moreover, we investigate the performance of our local feature selection in iden-

tifying the significant features learned by deep convolutional networks (e.g., VGG19).

In particular, we use the proposed Grad-SAM to visualize the selected features and

highlight the most important part of a given sample learned by the deep model. Then,

we investigate the classification power of the selected features.

Finally, we use synthetic and MNIST data set to explain the decisions made

by trained models. We use our proposed CE-LFS method to explore and explain the
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decisions made by a trained classifier.

5.1 Synthetic Data set

In this section, we evaluate the ability of MI-LSFS in selecting the locally

important features using a synthetic data set, where we have the labels of features.

We start by explaining our data generation process. Then, we report the performance

of MI-LSFS using the generated data.

5.1.1 Synthetic Data set Generation

We generate a synthetic data that includes negative and positive bags. The

positive bags are generated to include two target concepts that have different rele-

vant features and many irrelevant ones. First, we generate a large number of negative

instances. Each negative instance has 106 features sampled randomly using a uni-

form distribution in [−10, 10] (U [−10, 10]). Then, we generate two sets of positive

instances that contain different relevant features and many irrelevant ones. The first

3 features of the first set are generated using a normal distribution with zero mean

and unit standard deviation (N (0, 1)). The remaining 103 features are generated

using U [−10, 10] and are meant to be irrelevant. We will refer to this set of features

as target concept 1. The second set of features is generated in a similar way, except

that features 4, 5 and 6 are the relevant ones and are generated using N (0, 1). The

remaining features ([1, 2, 3, 7, 8, . . . , 106]) are generated using U [−10, 10] .

Next, we generate 100 negative bags and 100 positive bags. Negative bags

includes only negative instances. Each bag contains a random number (∈ [2, 9]) of
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instances, selected randomly from the set of negative instances. Positive bags contain

a random number (∈ [1, 3]) of positive instances and a random number (∈ [1, 6]) of

negative instances. The positive instances are sampled randomly from target concept

1 for 50 positive bags and from target concept 2 for the remaining 50 positive bags.

The negative instances of all positive bags are sampled from the set of negative

instances.

Figure 5.1: Representation of the synthetic data set using 3 sets of 3 different features.

(a) using features F1, F2 and F3 that are the discriminative features of the first concept

group. (b) using features F4, F5 and F6 that are the discriminative features of the

second concept group. (c) using features F11, F12 and F13 that are 3 random non

informative features.

Figure 5.1, illustrates the generated data using 3 sets of 3 selected features.

All the instances of all the positive bags that contain positive instances from target

concept 1 and target concept 2 are illustrated with red diamond and blue asterisks,

respectively. The negative instances are depicted with black dots. Figure 5.1(a)

depicts all the instances in the feature space formed by the three relevant features
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(F1, F2, and F3) of target concept 1. The positive instances drawn from target

concept 1 form a dense cluster, as shown by the red circle, while the other instances

are distributed uniformly in the feature space regardless of their bag labels. A similar

pattern can be observed in figure 5.1(b) for instances of target concept 2, where data

are projected using the 3 relevant features of target concept 2 (F4, F5, and F6). Figure

5.1(c), depicts the data projected using 3 non discriminative features (F11, F12, and

F13), where no dense clusters can be observed.

5.1.2 Synthetic Data set Results

Knowing the relevant features of each bag in the synthetically generated data

allows the quantitative evaluation of the proposed MI-LSFS. For this data, we set

α = 20 (used in (3.7) and (3.8)). The actual number of informative features for the

positive samples in this data set is 3. We let α = 20 to have a higher value than the

expected number of correct features in the data set.

MI-LSFS selects a set of relevant features for each bag. To quantify the

method’s performance in selecting the correct subset of features, we need a valid-

ity measure that represents the agreement of the selected features with the actual

labels of the features. We use the rand index [140], which is a measure of agree-

ment between two partitions or clusters. The adjusted rand index [141] is a corrected

version of the rand index for the chance.

First, we apply MI-LSFS and identify the relevant features for each bag in the

data. Then, for each positive bag, B+
i , we use its selected feature vector, f ∗(i), and

the vector that represents the ground truth labels of the features of B+
i to calculate its
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rand index and adjusted rand index score. Table 5.1 summarizes the results where we

show the average scores for positive bags that contain positive instances from target

concept 1 and target concept 2, and the average scores for all the positive bags. For

positive bags that contain instances from concept 1, the average rand index value

is 0.9806, and the adjusted rand index value is 0.8451. These high values confirm

the high level of agreement between the selected set of features for each bag and the

actual labels of features (relevant or irrelevant).

TABLE 5.1

Agreement between the true relevant features of each positive bag and the relevant

features learned by MI-LSFS

Rand Index Adjusted Rand Index

Target concept 1 0.9806 0.8451

Target concept 2 0.9804 0.8413

Average 0.9805 0.8432

5.2 MNIST Data set

In this section, we evaluate the performance of MI-LSFS in identifying discrimi-

native features and explore its explainability power by visualizing the selected features

using data sets generated from the benchmark MNIST data [139]. The MNIST data

includes a large set of 28×28 pixel images of handwritten digits. It contains 60,000

training images and 10,000 testing images where each image represents a digit.
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5.2.1 MIL MNIST Data sets

To generate an MIL version of the MNIST data, we treat each image (digit)

as an instances. Thus, each bag is a set of digits. We generate binary classification

data sets that include positive and negative bags. Positive bags are generated to

include at least one instance from the positive concept and negative bags contain

only negative instances. Considering each digit (i.e., 0, . . . , 9) as a concept, we can

generate 10 different data sets by selecting one digit as the positive concept and the

rest of digits as negative concepts at a time. We denote these data sets by DSdigit

where digit = 0, . . . , 9 is the positive concept used to generate the data set.

Each data set, DSdigit, contains 100 bags that where split equally into positive

and negative bags. Each bag contains a random number (∈ [2, 9]) of instances.

Negative bags includes only negative instances that are sampled from the negative

instances. Each positive bag contains a random number (∈ [1, 3]) of positive instances,

sampled from the positive concept instances, and a random number (∈ [1, 6]) of

negative instances sampled from the set of negative instances. For instance, in DS0

the positive bags include at least one “0” digit and negative bags contain 1, 2, . . . , 9

digits.

5.2.2 Visualization of Selected Features

Since each image in the MNIST data has 28 × 28 pixels, we represent each

image by a 28 × 28 = 784 dimensional vector where each component of the vector

represents a pixel in the original image. Therefore, the dimensionality of instances
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(i.e., number of features) in the generated data sets is 784. We apply MI-LSFS on all

generated data sets (DSdigit, digit = 0, . . . , 9).

In figure 5.2, we visualize some positive instances and their selected relevant

features for all the data sets. Each row represents instances from one of the training

data sets (DS0 toDS9). In each row, we show ten images, where each image represents

one positive instance from one positive bag. On each image, we also show the selected

relevant features (i.e., pixels) in red.

The first column of figure 5.2 depicts the visualization of a sample from each

data set, DSdigit, digit = 0, . . . , 9, and its selected features. Each image represents

one positive instance from one positive bag. As it is illustrated, MI-LSFS identified a

different set of features for each data set based on the positive concept representing

the data set. In the first three rows of figure 5.2, we visualize ten positive instances

from data sets DS0, DS1, and DS2 where the digits have different writing styles. As

it is illustrated, MI-LSFS selects a different set of features for different writing styles.

The first row depicted instances fromDS0, where digit 0 is the positive concept.

For each instance, a different set of features are selected, representing the locally

discriminant features. However, regardless of the different bags (that include different

shapes of zeros), the features inside the 0 digit are selected as the most relevant one

in characterizing this class. The consistency of having the selected features inside

the zero digits confirms the agreement of locally selected features regardless of their

shape. We should mention here that most of these features depict the parts that are

not activated by positive instances (0s), but they were activated by the other instances

(1-9). In other words, these features are selected based on the two criteria described
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Figure 5.2: Instances drawn from data set (DSdigit, digit = 0, . . . , 9) and their locally

selected features. Each row contains ten images representing positive instances from

ten sample bags and their selected features. The selected features are shown in red.

in section 3.1.1 (minimizing the distance between positive bags and maximizing the

distance between positive bags and negative bags).

The second row of figure 5.2 represents examples from DS1, where the positive
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concept is digit 1. For these bags, MI-LSFS tends to select the features at the two

sides of 1. Similar to DS0, we observe that regardless of the shape and orientation

of 1s, the selected features are consistently located at both sides of the digit. The

remaining rows in figure 5.2 show similar observations for the remaining data sets.

We should mention here that MI-LSFS selects an average of 20 features per bag for

all the generated data sets.

5.2.3 Classification Results

In the next experiment, we check the discriminating power of the locally se-

lected features when integrated into the classification. We generate 10 testing data

sets DSTdigit, digit = 0, . . . , 9 following the same steps used to generate the training

data sets, DSdigit, digit = 0, . . . , 9. Then, we train two classifiers on each training

data set using the benchmark classifier MILES [21], and the proposed MILES-LFS.

Next, we use the trained models to label the bags in the testing data sets. Finally,

we compute the area under the ROC curve (AUC) for each testing data set using

both classifiers. For MILES-LFS, we construct a set of reduced prototypes by setting

the number of selected instances from each bag, t, to 3 and using all the bags. As a

result, only 57% of the data is used to train MILES-LFS. For the MILES algorithm,

we set λ and σ2 for each data set using 2-fold cross-validation on the training set.

In table 5.2, we report the AUC of MILES and MILES-LFS algorithms on

the MNIST testing data sets. As it can be seen, MILES-LFS has similar or better

results than MILES for all data sets except DST7 and DST8. We should note here

that MILES-LFS was trained with only 57% of the training data while MILES used
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TABLE 5.2

AUC of classification results on 10 testing MNIST data sets

Data set MILES MILES-LFS

DST0 0.9560 0.9512

DST1 0.9956 0.9980

DST2 0.8980 0.8832

DST3 0.9160 0.9184

DST4 0.8928 0.9192

DST5 0.8140 0.8452

DST6 0.9708 0.9900

DST7 0.9540 0.9360

DST8 0.8048 0.7568

DST9 0.8804 0.8836

all the training data. Furthermore, MILES-LFS used only a subset of features that

MI-LSFS selected for each bag in the learning process. These results confirm that

MILES-LFS has comparable accuracy to the MILES algorithm. Moreover, the locally

selected features and the selected prototype instances can reduce the complexity of

the training and provide a more explainable classification model.

5.3 Benchmark Data sets

In this section, we use other real benchmark MIL data sets to evaluate the

performance of our methods in identifying sample dependent salient features. These

data sets are selected from two commonMIL applications: the drug activity prediction

and image classification. Table 5.3 summarizes the statistics of the used benchmark

data sets. We should note here that these data sets are the common real benchmark

data sets used in the MIL literature to validate the new algorithms [14,17,18,73,131].
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The first data set, MUSK1, is for the drug activity prediction adapted by [48] for the

MIL framework. It represents a set of unique molecules (bags), and each molecule

has different conformations (instances). Positive bags are the molecules with at least

one shape of a molecule that binds strongly to a target protein. There is no shape of

a molecule in negative bags that can bind tightly to the target [18].

TABLE 5.3

Summary statistics of benchmark data sets

Data set #Pos Bags #Neg Bags Avg #instances # Features

MUSK1 47 45 5.17 166

Elephant 100 100 6.60 230

Fox 100 100 6.96 230

Tiger 100 100 6.10 230

The Elephant, Fox, and Tiger data sets are adapted for the MIL framework

in [51]. They are subsets of the COREL data set where each bag is a representation

of an image. Images (bags) are broken into segments (instances) represented by color,

texture, and shape descriptors. Each data set contains 100 positive bags from the

target class animal and 100 negative bags drawn randomly from the other animal

classes. The positive bags consist of instances with at least one instance from the tar-

get animal (positive instances), and the negative bags contain other animals (negative

instances). In the next sub-sections, we investigate the performance of MILES-LFS

using benchmark data sets.
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5.3.1 Feature Selection by MI-LSFS

MI-LSFS identifies a subset of relevant features for each bag where the number

of selected features for each bag can vary. We investigate the performance of MI-LSFS

in reducing the dimensionality of features per bag. In particular, we inspect the num-

ber of features selected by MI-LSFS for each bag. To investigate this, we perform

MI-LSFS on all the benchmark data sets using 4-fold cross-validation. We repeat each

experiment 7 times using different random initialization. For each run, we calculate

the number of selected features for each bag. Table 5.4 summarizes the results where

we show the total number of features in each data set and the minimum, maximum,

and average number of selected features using MI-LSFS.

TABLE 5.4

Summary statistics of number of selected features per bag on benchmark data sets

Data set # of

Features

Minimum # of

selected features

Maximum # of

selected features

Average # of

selected features

MUSK1 166 2 28 8

Elephant 230 4 64 23

Fox 230 2 80 20

Tiger 230 2 60 14

For instance, as it is shown in table 5.4, the Tiger data set contains 230 features

and MI-LSFS selects an average of only 14 relevant features per bag out of these 230

features. The minimum and the maximum number of selected features on the Tiger

data set are 2 and 60, respectively. The statistics show similar results for the other
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benchmark data sets. These results indicate the capability of MI-LSFS in reducing

the dimensionality of instances within bags by identifying the most relevant features.

5.3.1.1 Maximum Number of Selected Features

In this experiment, we investigate the average number of selected features as

we vary the maximum number of features that can be selected, (i.e., as we vary the

parameter α), for the Tiger data set. We set α to the values in the range of 10 to

230 (maximum number of features in Tiger data set) by an increment of 10. Then,

we calculate the average number of features selected by MI-LSFS for each sample.

The results are shown in figure 5.3. Using this plot, we can obtain the saturation

value for a given data set. For the Tiger data set, it can be seen that the 14 is the

saturation value.

Figure 5.3: Averaged number of selected features on Tiger data set when we set α to

the values in the range of 10 to 230 by an increment of 10.
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5.3.2 Prototype Instance Selection using MILES-LFS

In this sub-section, we investigate the performance of MILES-LFS when we

reduce the number of instances that can be selected as prototypes. To explore this,

we set a parameter, t, to limit the maximum number of instance prototypes that

can be selected from each bag. In particular, for a given bag Bi, we use equation

(4.2) to score all of its instances and select the top t instances as instance prototypes.

Next, we train and test the MILES-LFS classifier on the Tiger data set as we let

t ∈ {1, 2, 3, 4, 5, 6}. For comparison purposes, we also trained and tested MILES-LFS

using all the instances of all the bags. For each value of t, we train and test MILES-

LFS using 4-fold cross-validation. For each fold, we repeat the experiment 7 times

with different random initialization. For each run, we compute the area under the

ROC Curve (AUC).

The results are summarized in figure 5.4. The horizontal axis represents the

parameter t, and “All” is where all the instances of all the bags are used to train

the classifier. The vertical axis depicts the summary statistics for AUC where it

summarizes the average and standard deviation calculated using all the 7 runs for the

given t value. As it is shown, using only the top one instance per bag, t = 1, leads

to an average AUC of 0.79. By increasing t, the average AUC value increases until

t reaches 3. Increasing t further does not improve the performance. Thus, by using

only about 65% of the data set instances to train the classifier (t = 4) we achieved

the same performance as when all of the training data instances were used. In the

Tiger data set, the average number of instances is 6.10. Moreover, the small value
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of standard deviation in all the experiments (for different values of t) indicates the

consistency of results for different random initialization. This experiment confirms

the MILES-LFS strength in identifying the most informative instance prototypes of

the bags and the robustness of the results.

Figure 5.4: Performance of MILES-LFS using the top t instances per bag on the Tiger

data set. This data has an average of 6.10 instances per bag.

5.3.3 Prototype Bags and Instances Selection using MILES-LFS

In this experiment, we investigate the performance of MILES-LFS when first, a

reduced set of prototype bags is selected. Then, for each selected bag, we identify its

subset of representative instances. To explore this, we follow the approach discussed

in section 4.1 to assign a score to every bag Bi in the training data. Using this score,

we select the top b informative bags. Next, using the instance scores, we select the

top t informative instances of each bag.

Figure 5.5 shows the AUC of MILES-LFS on the Tiger data set. The results,
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those reported in the previous section, are calculated using a 4-fold cross-validation

and repeating the experiment for 7 different random initialization. The vertical axis

represents the AUC value, and the horizontal axis shows the number of bags per class

used for the classification (from 5 to 75 with steps of 5). In figure 5.5(a), we show

the AUC of MILES-LFS algorithm when no instance selection was applied. That is,

we use all of the instances for each selected bag. The average and the 95% confidence

intervals are reported for the seven different runs.

In 5.5(b), we used the top 4 instances per bag (i.e., t = 4) and varied the num-

ber of bags as in figure 5.5(a). By increasing the number of bags in the learning pro-

cess, the classification performance increases until it reaches 55 bags, where it remains

constant. Therefore, by using 55 bags per class, and their top 4 instances, we obtain

a slightly better classification accuracy than the one obtained using all data. In other

words, by using only 48% of the instances (selected instances / total instances =

(110 × 4)/(6.1 × 150)), we obtain slightly better results than using 100% of the in-

stances.

We have investigated alternative approaches to identify bag prototypes and in-

stance prototypes, such as using different variations of distance metrics in the learning

process and to score the instances. Furthermore, we investigated alternative measures

such as MCC, recall, and F1 score to form the clusters of bags and rank them to

identify the bag prototypes. Based on the results, our current approach had the best

performance.
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(a)

(b)

Figure 5.5: AUC of classification results on the Tiger data set: (a) all instances of

the bags are used. (b) maximum number of instances per bag used is set to 4 (t = 4).

5.3.4 Effect of Instance Selection on the Computational Efficiency of the

Classifier

As we discussed in section 4.1, one of the main drawbacks of MILES is that it

does not scale to very large data sets. Moreover, when the number of instances per

bag is very large, MILES projects the data to a very high dimensional space. In this

case, the 1-Norm SVM may not be able to identify the few target concepts.
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Figure 5.6: Comparison of the learning time when using all the instances and when

using top 4 instances per bag

In figure 5.6, we report the learning CPU time of MILES-LFS for the Tiger

data set. The orange line shows the average learning time in seconds where we used

all the instances, and the blue line depicts the average learning time where we used

the top 4 selected instances per bag. We vary the number of bags used to train the

classifier from 5 to 75 per class with steps of 5. Increasing the number of training

bags leads to an increase in the learning process for the 1-Norm SVM. However, our

instance selection approach leads to a significant decrease in the learning process

while it reaches the same classification results.

As reported in the previous section (figure 5.5), MILES-LFS can reach its best

accuracy using 40 bags and 4 instances per bag. Using this setting, the learning time
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is 2 seconds, compared to 11.08 sec ±1.21 for MILES when all bags and all instances

are used (last point in orange curve in figure 5.6).

5.3.5 Classification Results

In this experiment, we compare the classification accuracy of MILES-LFS and

the standard MILES algorithm using the benchmark data sets in table 5.5. For the

COREL data sets, we select a set of reduced prototypes by setting the number of

bags, b, to 60 and the number of instances from each bag, t, to 4. For the MUSK1

data set, we used t = 3, and we used all the bags as the size of the training data set

is small. We set the parameters according to 2-fold cross-validation on the training set.

TABLE 5.5

Comparison of the AUC of MILES and MILES-LFS using 4 benchmark data sets

Dataset MILES MILES-LFS

Elephant 0.8908± 0.011 0.8882± 0.010

Fox 0.6588± 0.029 0.6639± 0.019

Tiger 0.8828± 0.023 0.8503± 0.011

MUSK1 0.8831± 0.010 0.8782± 0.017

In table 5.5, we report the average AUC of MILES and MILES-LFS algorithms

on the benchmark data sets for seven runs. For each run we use 4-fold cross-validation.

We report the average and standard deviation across all runs. As it can be seen,

MILES-LFS has similar results to MILES for all data sets except Tiger. It is also
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worth noting that MILES-LFS uses only 52% of the training data to train the model.

These results confirm that our proposed algorithms are computationally more efficient

and results in comparable accuracy. Moreover, the selected relevant bags and their

prototype instances can provide more explainable classification models.

5.4 Using MI-LSFS to Explain CNN Decisions

In this section, we evaluate the performance of MI-LSFS in identifying the

informative features among the features extracted from a CNN network. We in-

vestigate the explainability and classification power of the learned features. In the

following experiments, we use two data sets to validate our results: the public Vehicle

Make and Model Recognition (VMMR) data set [142], and the Dogs vs. Cats data

set [143]. First, we train a CNN model on each data set using transfer learning and

the VGG19 model as the base. Then, we extract features from the trained model and

form a training data set using the extracted features. Next, we apply our MI-LSFS

algorithm on the training data set to identify the informative features for each input

sample. Finally, we investigate the classification power of the selected features by

looking at the neighbors of a target sample and using its selected features. Moreover,

we use our visualization method (Grad-SAM) to visually explain the learned features.
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5.4.1 Data sets

5.4.1.1 Dogs vs. Cats Data set

The first data set, Dogs vs. Cats, contains a large set of dogs and cats images

that was created by the Microsoft Research team to compare the performance of hu-

mans and machines in discriminating between cats and dogs. The images have a wide

diversity in backgrounds, angles, poses, and lighting, which makes the classification

task challenging. The ASIRRA test [143] is created using that. Since then, this data

set has been studied in the machine learning attacks domain [144]. Moreover, it is

used in a Kaggle competition.

The Dogs vs. Cats data set contains 25,000 training images and 10,000 testing

images. Each image has a size of 150× 150 pixels. We use a subset of 2,000 training

images and 1,000 testing images.

5.4.1.2 VMMR Data set

The Vehicle Make, and Model Recognition (VMMR) data set [142] is a large-

scale and diverse data set that includes car images from different makes and models. It

was used to develop and validate different classification and object detection models.

Moreover, it was used to train feature extractor models for different applications. The

data includes car models manufactured between 1950 to 2016. It contains 291,752

images from 9,170 different classes. For our experiments, we use a subset of the

VMMR data that includes three classes of vehicles (Pickup, SUV, and Sedan). For

this data, we also fix the image sizes to 150× 150 pixels. This subset contains 15,000
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training images and 6,000 testing images.

5.4.2 Transfer Learning and Feature Extraction

To build our models, we use transfer learning to fine-tune the parameters of a

pre-trained VGG19 [81] network on each data set. To adapt the VGG19 architecture,

we exclude the top layers, the fully connected layers. Then, we add two fully connected

layers with 256 and 64 nodes, followed by a dense output layer with one node for each

class. Moreover, we fine-tune the weights of the last convolutional block. Figure 5.7

depicts the architecture of our adapted network. Using this architecture, we build a

model for each data set by using the training data sets to learn and adapt the weights.

We used 15,000 of training images from VMMR data set to train the network. For

the Dogs vs. Cats data set, we used the subset of 2,000 of training images. The

accuracy of the trained models on the testing data sets are 90.22% and 93.51%, for

the VMMR and Dogs vs. Cats data sets, respectively.

After building the models, we use them as feature extractors to extract features

from the data sets. We feed each image into the learned model and extract the

computed values at the last fully connected layer as features. Thus, each image is

represented by a 64-dimensional feature vector. Finally, we make new training and

testing data sets by mapping the respective images to their extracted features.

We use the new training data sets as input to the MI-LSFS to identify the

relevant features for each training sample.
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Figure 5.7: The network architecture for the transfer learning based on VGG19 ar-

chitecture. Fully connected layers and the classification layer are changed to adapt

the architecture on the data sets.

5.4.3 Applying MI-LSFS

Using the mapped features of the VMMR and Dogs vs. Cats images, we apply

MI-LSFS to identify the local features for each sample. We perform MI-LSFS on a

subset of the new training data sets (1050 images from VMMR and 1000 images from

Dogs vs. Cats Data sets). For these experiments, we set α based on the saturation
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value of the training data set. MI-LSFS selects an average of 28(or 43.7%) and 39(or

60.9%) features for samples of Dogs vs. Cats and VMMR data sets, respectively.

5.4.4 Illustrating the Relevancy of the Learned Features

To investigate the identified relevant features for some samples, we use the

kNN classifier as it is easy to interpret and has a high performance on the testing

data sets. For this experiment, we are interested in identifying the nearest neighbors

of samples to study how informative the selected features are. For a given testing

sample, which we call the query-image, we identify its k nearest neighbors from the

training data set. We apply the kNN two times: The first time we use all the features

to identify the nearest neighbors of the query-image; and the second time we use only

the learned relevant features of each training sample obtained from the MI-LSFS.

Figure 5.8: The nearest neighbors of a query-image-1. The first row shows the nearest

neighbors using all the features. The second row shows the nearest neighbors consid-

ering only the learned features of each training samples in distance calculation. The

class label of each image is displayed above the image.

In figure 5.8, we show the seven nearest neighbors of a query-image from the

VMMR data set. We refer to this image as query-image-1. Query-image-1 is an
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easy to predict Pickup car. Thus, regardless of using all the features or the selected

features, all of its 7 closest neighbors are from the same class as the query image (i.e.,

Pickup).

The second example, query-image-2, is a hard to detect Sedan car. In figure

5.9, we display the query-image and its closest neighbors. As shown, when all features

are used, many of the closest neighbors show the car’s rear, and there are images from

incorrect class in the closest neighbors (i.e., images showing the rear of a Pickup).

This makes predicting the correct class of query-image-2 hard. However, when using

only the selected features in the distance calculation, all the closest neighbors were

from the same class as the query-image-2 (i.e., Sedan) and with different angles,

depth, rotation, and models. Thus, the model can identify the correct class with

perfect confidence.

Figure 5.9: The nearest neighbors of a query-image-2. The first row shows the near-

est neighbors using all the features. The second row shows the nearest neighbors

considering only the learned features of each training samples in distance calculation.

The class label of each image is displayed above the image. Nearest images from the

incorrect class are indicated with red labels.

86



Figure 5.10 shows the result for query-image-3, which is a Pickup. As it is

illustrated, when we used all the features, the closest neighbors were very similar to

the query image but from the wrong class (i.e., SUV). Thus, the kNN classifier failed

to predict its correct class when it used all the features in the distance calculation.

However, when we use only the selected features, all of the closest samples were from

the same class as the query-image-3 (i.e., Pickup). In this case, the kNN predicted

the correct label of query-image-3.

Figure 5.10: The nearest neighbors of a query-image-3. The first row shows the

nearest neighbors using all the features. The second row shows the nearest neighbors

considering only the learned features of each training samples in distance calculation.

The class label of each image is displayed above the image. Nearest images from the

incorrect class are indicated with red labels.

In conclusion, integrating the selected features in building the model makes the

closest neighbors more similar to the query image. Moreover, using a smaller number

of features can make the similarity more semantic and does not require the objects

in the images to have similar viewing angle, depth, rotation, etc.

To illustrate how using subsets of relevant features helps the kNN classifier,
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Figure 5.11: Histogram of distances of query-image-1 from the training samples color

coded for the three classes of VMMR data set. (a) using all the features. (b) using

the selected features of training samples.

we compare the distances obtained for the query images when we use all the features

to those obtained when we use only the relevant ones. Figures 5.11, 5.12 and 5.13

depict the histograms of the distances of the query images from the training samples,

when we use all/subsets of features. For instance, figure 5.11 illustrates the distances

to query-image-1. Each color shows the histogram of distances of query-image-1 to

the training samples of one class. For instance, the red histogram shows the distances

between query-image-1 and the training samples of class Pickup. Figure 5.11(a) and

5.11(b) depict the histograms when using all the features and when using the selected

features in the distance calculation. As it can be seen, integrating the selected features

helps separate the distribution of distances of different classes. Moreover, it makes

the samples from the Pickup class (correct label of query-image-1) closer to the query-
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Figure 5.12: Histogram of distances of query-image-2 from the training samples color

coded for the three classes of VMMR data set. (a) using all the features. (b) using

the selected features of training samples.

image-1 while making the distances of the samples from the incorrect classes, SUV

and Sedan, farther.

Figure 5.12 illustrates the distances of query-image-2. As it can be seen in

figure 5.12(a), the distributions of the three classes are overlapping, and it is hard to

identify the correct class. However, using the selected features in figure 5.12(b), the

distributions are separated and the samples from the correct class (i.e., Sedan) are

closer to the query image. This makes the classifier predict the label more confidently.

Figure 5.13 illustrates the distances of query-image-3. Here again in figure

5.13(a), the distribution of the three classes, especially Pickup and SUV, are over-

lapping. In this example, the query image is very similar to both SUV and Pickup

classes. This makes the separation of the two similar classes very hard. However,
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Figure 5.13: Histogram of distances of query-image-3 from the training samples color

coded for the three classes of VMMR data set. (a) using all the features. (b) using

the selected features of training samples.

Integrating the selected features, as it can be seen in 5.13(b), helps the classifier to

predict the correct class. The above examples confirm our claim that the learned

relevant features help in identifying the semantically most similar images. A similar

trend was observed for the Dogs vs. Cats data set.

5.4.5 Visualization by using Grad-SAM

In this section, we use our proposed visualization method, Grad-SAM, to high-

light the discriminative part of the images. Figure 5.14 illustrates some images from

the VMMR data set and their Grad-SAM visualization. For each image, we apply

Grad-SAM using its learned features to visualize and highlight its salient parts. As it

can be seen, for each image, the highlighted parts show different segments and with

different concentrations.
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Figure 5.14: Visualization of some images from VMMR data set using Grad-SAM

Figure 5.15 depicted some images from the Dogs vs. Cats data set paired with

their Grad-SAM visualization. The visualizations confirm that MI-LSFS is selecting

salient local features for each sample. Moreover, it confirms the performance of Grad-

SAM in visualizing the subset of selected features which helps to validate the locally

learned features visually.

In Figure 5.16, we depicted two sample images that were incorrectly classified

when using all the features. However, using the selected features, the samples are

correctly classified. For each image, we visualize the sample, and its visualization

91



Figure 5.15: Visualization of some images from Dogs vs. Cats data set using

Grad-SAM

using all the features and the selected features. As it can be seen in 5.16(a), when

we used all the features, the most significant part that is highlighted are irrelevant

to the target concept (dog). However, using the subset of selected features, the

head of the dog is highlighted. In 5.16(b), by using all the features, the front of

the vehicle (the grill and light) are highlighted more than the other parts (back

of the vehicle). However, by using the learned features, the concentration of the

highlighted parts changed. As a result, the vehicle’s back, the discriminative part

between Pickup and SUV, is highlighted more than the front of the vehicle, the similar

parts between Pickup and SUV. Thus, the set of learned features helps the classifier
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to discriminate between Pickup and SUV more efficiently. These experiments confirm

the efficiency of Grad-SAM in visualizing the locally learned features. Moreover, it

confirms that MI-LSFS learns a salient subset of features with higher explainability

and classification power.

Figure 5.16: Visualization of images using all the features and selected features: (a)

a sample from Dogs vs. Cats data set. (b) a sample from VMMR data set.

5.4.6 Classification

In this experiment, we check the discriminating power of the locally selected

features when integrated into the classification. We compare the classification accu-

racy of the trained CNN model, kNN using all the features, kNN using the selected

features, and our MILES-LFS algorithm. For the kNN models, we set k to the de-

fault value of 10. We learned the parameters of MILES-LFS algorithm using 2-fold
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cross-validation on the training data sets.

In table 5.6, we summarized the classification results. The results indicate that

the kNN classifier, that uses all the features, has similar accuracy to the CNN model.

As it can be seen, kNN + FS also has comparable accuracy to the CNN classifier for

both data sets, and MILES-LFS has the highest performance for both data sets. We

should note here that kNN + FS and MILES-LFS were trained using the reduced set

of features. The high classification performance of the models where they integrate the

selected features confirms the performance of our approach in learning the informative

set of features for each object. Moreover, the results confirm that we obtained higher

accuracy and higher explainability power with lower computational complexity by

using the learned features.

TABLE 5.6

Comparison of the accuracy of models using VMMR and Dogs vs. Cats data sets

Method VMMR Dogs vs. Cats

CNN (VGG19) 90.22 93.51

kNN (All features) 90.28 94.10

kNN + FS 90.31 93.32

MILES-LFS 90.63 94.18

5.5 Classifier Explanation using Local Feature Selection

In this section, we investigate our proposed CE-LFS method in explaining

the decisions made by trained models. In particular, we use CE-LFS to explain the

decisions made by classifiers.
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We generate a synthetic data set, similar to the toy example discussed in 4.3.2,

to investigate our proposed CE-LFS method. Our synthetic data set contains two

classes of samples, and the classes are separable in a 4-dimensional feature space (i.e.,

f1, f2, f3, and f4). We generate the first class samples using a normal distribution

with mean µ1 = 5 and standard deviation σ1 = 1.8, N (5, 1.8), and second class using

a normal distribution with mean µ2 = 1.8 and standard deviation σ2 = 1.8, N (8, 1.8).

We select four samples from each class and adjust a combination of two features

(e.g., f2 and f3), such that the kNN classifier cannot assign them to their correct class

in the 4-dimensional feature space. However, the classifier can correctly predict these

samples using the other features, e.g., f1 and f4. We set the number of samples in

the synthetic data set to 400 (200 per class). Let D = {(xi, yi)}Ni=1 denote this data

set where N is the number of samples.

5.5.1 Form the Data set and Applying ML-LSFS

To form the new data set, D′ = {(xi, yi
′)}Ni=1, we apply kNN classifier to the

4-dimensional feature space. Next, we form the confusion matrix using the correct

labels and predicted labels of the model. Using the confusion matrix, we assign a new

label, yi
′, to each sample. Next, we perform MI-LSFS on D′. Table 5.7 illustrates the

results for a few samples.

5.5.2 Explaining the Results

In table 5.7, we report the results of some samples. For each sample, we

showed its class, predicted class, and learned relevant features. For instance, sample-
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TABLE 5.7

Summary of learned relevant features for some samples from the synthetic data set

Sample Class Predicted

Class

Learned relevant features

f1 f2 f3 f4

Sample-1 1 1 * *

Sample-2 1 1 *

Sample-3 1 1 * *

Sample-4 1 1 * *

Sample-5 2 2 *

Sample-6 2 2 * *

Sample-7 2 2 * *

Sample-8 2 2 * *

Sample-9 1 2 * *

Sample-10 1 2 * *

Sample-11 1 2 * *

Sample-12 1 2 * *

Sample-13 2 1 * *

Sample-14 2 1 * *

Sample-15 2 1 * *

Sample-16 2 1 * *

1 is predicted correctly as class-1, and features f1 and f2 are its learned relevant

features. In other words, features f1 and f2 explain the reason that sample-1 is

classified correctly as class-1. Similarly, sample-6 is classified correctly as class-2 due

to features f3 and f4. The interpretation is that sample-6 is closer to samples of class-2

(its correct class) than the samples of class-1 (its incorrect class) in the feature space

formed by using f3 and f4. The same explanation is valid for the other correctly

classified samples.
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Figure 5.17: Visualization of sample-10. Each sub figure, illustrates the data set in a

2-dimensional feature space.

Sample-10, one of the samples that we adjusted two of its features (i.e., f3 and

f4), is classified incorrectly as class-2. As it is illustrated in table 4.1, features f3 and

f4 are selected for sample-10. The interpretation is that these features are the reason

that this sample is classified incorrectly. Figure 5.17, depicts six figures, where each

sub figure displays a scatter plot of the data set using one of the 2-combinations of the

four features. The samples are color-coded based on their class labels, and sample-10

is highlighted with a black circle. As can be seen in figure 5.17(a), sample-10 which

is classified incorrectly by the classifier can be correctly classified as class-1 by using

features f1 and f2. In the feature space formed by f1 and f2, sample-10 has the same

distribution as the other samples of class-1 (its correct class). Moreover, as depicted

97



Figure 5.18: Visualization of sample-13. Each sub figure, illustrates the data set in a

2-dimensional feature space.

in 5.17(g) features f3 and f4 are the reason why this sample is classified incorrectly.

In the feature space formed by f3 and f4, sample-10 has the same distribution as

class-2 samples (its incorrect class).

In figure 5.18, we highlighted sample-13 that is classified incorrectly as class-1.

As it can be seen in figure 5.18(e), sample-13 can be correctly classified as class-2 by

using features f2 and f3. Moreover, as it is depicted in 5.18(c) features f1 and f4 are

the reason that sample-13 is classified incorrectly. The same explanation is valid for

the other samples.
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CHAPTER 6

CONCLUSIONS AND POTENTIAL FUTURE WORK

6.1 Conclusions

We proposed a local feature selection method for multiple instance learning.

The proposed algorithm, MI-LSFS, searches for the relevant features within each bag

in the feature space. We investigated and illustrated the performance of MI-LSFS

in selecting the relevant features on synthetic as well as real benchmark data sets.

The rand index score of selected features and visualization of selected features using

synthetic and real data sets confirmed that MI-LSFS learns the relevant set of features

for each bag.

As an application of MI-LSFS, we have proposed a new classification method

for multiple instances learning, called MILES-LFS, which explores the information

learned by MI-LSFS during the feature selection process. We investigated the perfor-

mance of MILES-LFS on several real benchmark data sets. Our results indicate that

by using only 52% of benchmark data sets to train MILES-LFS, the classification

accuracy is comparable to that of the MILES algorithm, which uses all the training

data. The results also confirm that using the information learned by MI-LSFS, we can

select a small subset of representative bags and instances. Furthermore, the reduced

set of prototypes significantly reduces computational time without affecting the clas-
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sification accuracy. For instance, for one benchmark data, our results indicated that

MILES-LFS is 5.5 times faster than MILES while maintaining comparable accuracy.

Convolutional Neural Networks (CNNs) are a category of multi-layer neural

networks that have been used in image recognition, image classification, object de-

tection, image captioning and other applications. During the last few years, due to

the increasing computational power, the increasing amount of data available, and

advances in training the neural network models, these models become the standard

in finding complex patterns. However, explaining the decisions made by these black

boxes remain a challenging task. In an effort to gain an understanding of a CNN

model, we investigated the features extracted by trained CNN models. Another ap-

plication of the proposed MI-LSFS includes a new method that uses our MI-LSFS

algorithm to explore and investigate the features learned by a CNN model. We per-

formed comprehensive experiments on CNN models trained on real data sets. The

comparison of the quantitative classification accuracy results confirmed the better

performance of our method. To investigate the qualitative measures and the explain-

ability of our method, we also proposed a visualization method for CNN models,

called Gradient-weighted Sample Activation Map (Grad-SAM), that uses the locally

learned features of each sample to highlight their relevant and salient parts. The

visualization experiments confirm both the explainability power of the selected fea-

tures and the performance of Grad-SAM in visualizing the locally learned features of

a CNN model.

The third proposed application is a novel explanation method, called Classifier

Explanation by Local Feature Selection (CE-LFS), that can justify the decisions of a
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trained model. The experimental results confirm the ability of CE-LFS in explaining

correctly and incorrectly classified samples. The explanation generated by CE-LFS

can be used as a feedback to improve the classification performance.

6.2 Potential Future Work

Although the proposed algorithms are fully developed and have shown promis-

ing results, there is still room for improvement. Future work can include an extension

of our proposed applications, exploring the CNN models and CE-LFS algorithm, to

the MIL data. Another potential work is to speed up the learning of MI-LSFS by

adding additional assumptions to its optimization process and extending it to larger

data sets.

Future research may also include formulating MI-LSFS as a deep metric learn-

ing problem by treating each sample as one anchor and generating the pair of anchor-

positive and anchor-negative samples using the same class and other class labels. This

can accelerate the learning process by using GPUs.

Moreover, we recommend the evaluation of our MI-LSFS algorithm on other

domains and applications such as biomarker discovery for omics data [41,42]. In omics

data, features are extracted from 3D spectrums where there is a chance of information

loss in the feature extraction process. However, different extraction parameters can

extract a set of different instances for each sample, and the data can be mapped

in multiple instance form. Applying MI-LSFS on this mapped data to identify the

biomarkers could be a potential future research topic.

CE-LFS introduces a new research topic for explaining the decisions of trained
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classifiers. Based on the promising results of CE-LFS, we suggest applying it to other

applications by considering alternative assumptions in identifying the salient local

features.
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