19 research outputs found

    Saliency propagation from simple to difficult

    Get PDF
    Saliency propagation has been widely adopted for identifying the most attractive object in an image. The propagation sequence generated by existing saliency detection methods is governed by the spatial relationships of image regions, i.e., the saliency value is transmitted between two adjacent regions. However, for the inhomogeneous difficult adjacent regions, such a sequence may incur wrong propagations. In this paper, we attempt to manipulate the propagation sequence for optimizing the propagation quality. Intuitively, we postpone the propagations to difficult regions and meanwhile advance the propagations to less ambiguous simple regions. Inspired by the theoretical results in educational psychology, a novel propagation algorithm employing the teaching-to-learn and learning-to-teach strategies is proposed to explicitly improve the propagation quality. In the teaching-to-learn step, a teacher is designed to arrange the regions from simple to difficult and then assign the simplest regions to the learner. In the learning-to-teach step, the learner delivers its learning confidence to the teacher to assist the teacher to choose the subsequent simple regions. Due to the interactions between the teacher and learner, the uncertainty of original difficult regions is gradually reduced, yielding manifest salient objects with optimized background suppression. Extensive experimental results on benchmark saliency datasets demonstrate the superiority of the proposed algorithm over twelve representative saliency detectors

    PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection

    Full text link
    Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task. In this paper, we propose a novel pixel-wise contextual attention network, i.e., the PiCANet, to learn to selectively attend to informative context locations for each pixel. Specifically, for each pixel, it can generate an attention map in which each attention weight corresponds to the contextual relevance at each context location. An attended contextual feature can then be constructed by selectively aggregating the contextual information. We formulate the proposed PiCANet in both global and local forms to attend to global and local contexts, respectively. Both models are fully differentiable and can be embedded into CNNs for joint training. We also incorporate the proposed models with the U-Net architecture to detect salient objects. Extensive experiments show that the proposed PiCANets can consistently improve saliency detection performance. The global and local PiCANets facilitate learning global contrast and homogeneousness, respectively. As a result, our saliency model can detect salient objects more accurately and uniformly, thus performing favorably against the state-of-the-art methods

    A Fast Image Segmentation Algorithm Based on Saliency Map and Neutrosophic Set Theory

    Get PDF
    corecore