3,497 research outputs found

    Learning to segment with image-level supervision

    Full text link
    Deep convolutional networks have achieved the state-of-the-art for semantic image segmentation tasks. However, training these networks requires access to densely labeled images, which are known to be very expensive to obtain. On the other hand, the web provides an almost unlimited source of images annotated at the image level. How can one utilize this much larger weakly annotated set for tasks that require dense labeling? Prior work often relied on localization cues, such as saliency maps, objectness priors, bounding boxes etc., to address this challenging problem. In this paper, we propose a model that generates auxiliary labels for each image, while simultaneously forcing the output of the CNN to satisfy the mean-field constraints imposed by a conditional random field. We show that one can enforce the CRF constraints by forcing the distribution at each pixel to be close to the distribution of its neighbors. This is in stark contrast with methods that compute a recursive expansion of the mean-field distribution using a recurrent architecture and train the resultant distribution. Instead, the proposed model adds an extra loss term to the output of the CNN, and hence, is faster than recursive implementations. We achieve the state-of-the-art for weakly supervised semantic image segmentation on VOC 2012 dataset, assuming no manually labeled pixel level information is available. Furthermore, the incorporation of conditional random fields in CNN incurs little extra time during training.Comment: Published in WACV 201

    Visual Saliency Based on Multiscale Deep Features

    Get PDF
    Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this CVPR 2015 paper, we discover that a high-quality visual saliency model can be trained with multiscale features extracted using a popular deep learning architecture, convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for extracting features at three different scales. We then propose a refinement method to enhance the spatial coherence of our saliency results. Finally, aggregating multiple saliency maps computed for different levels of image segmentation can further boost the performance, yielding saliency maps better than those generated from a single segmentation. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotation. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks, improving the F-Measure by 5.0% and 13.2% respectively on the MSRA-B dataset and our new dataset (HKU-IS), and lowering the mean absolute error by 5.7% and 35.1% respectively on these two datasets.Comment: To appear in CVPR 201
    • …
    corecore