1,902 research outputs found

    An adaptive training-less framework for anomaly detection in crowd scenes

    Get PDF
    Anomaly detection in crowd videos has become a popular area of research for the computer vision community. Several existing methods have determined anomaly as a deviation from scene normalcy learned via separate training with/without labeled information. However, owing to rare and sparse nature of anomalous events, any such learning can be misleading as there exist no hardcore segregation between anomalous and non-anomalous events. To address such challenge, we propose an adaptive training-less system capable of detecting anomaly on-the-fly. Our solution pipeline consists of three major components, namely, adaptive 3D-DCT model for multi-object detection-based association, local motion descriptor generation through an improved saliency guided optical flow, and anomaly detection based on Earth mover's distance (EMD). The proposed model, despite being training-free, is found to achieve comparable performance with several state-of-the-art methods on publicly available UCSD, UMN, CUHK-Avenue and ShanghaiTech datasets.</p

    Detecting and removing visual distractors for video aesthetic enhancement

    Get PDF
    Personal videos often contain visual distractors, which are objects that are accidentally captured that can distract viewers from focusing on the main subjects. We propose a method to automatically detect and localize these distractors through learning from a manually labeled dataset. To achieve spatially and temporally coherent detection, we propose extracting features at the Temporal-Superpixel (TSP) level using a traditional SVM-based learning framework. We also experiment with end-to-end learning using Convolutional Neural Networks (CNNs), which achieves slightly higher performance than other methods. The classification result is further refined in a post-processing step based on graph-cut optimization. Experimental results show that our method achieves an accuracy of 81% and a recall of 86%. We demonstrate several ways of removing the detected distractors to improve the video quality, including video hole filling; video frame replacement; and camera path re-planning. The user study results show that our method can significantly improve the aesthetic quality of videos
    • …
    corecore