322 research outputs found

    Non normal logics: semantic analysis and proof theory

    Full text link
    We introduce proper display calculi for basic monotonic modal logic,the conditional logic CK and a number of their axiomatic extensions. These calculi are sound, complete, conservative and enjoy cut elimination and subformula property. Our proposal applies the multi-type methodology in the design of display calculi, starting from a semantic analysis based on the translation from monotonic modal logic to normal bi-modal logic

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Slanted canonicity of analytic inductive inequalities

    Get PDF
    We prove an algebraic canonicity theorem for normal LE-logics of arbitrary signature, in a generalized setting in which the non-lattice connectives are interpreted as operations mapping tuples of elements of the given lattice to closed or open elements of its canonical extension. Interestingly, the syntactic shape of LE-inequalities which guarantees their canonicity in this generalized setting turns out to coincide with the syntactic shape of analytic inductive inequalities, which guarantees LE-inequalities to be equivalently captured by analytic structural rules of a proper display calculus. We show that this canonicity result connects and strengthens a number of recent canonicity results in two different areas: subordination algebras, and transfer results via G\"odel-McKinsey-Tarski translations.Comment: arXiv admin note: text overlap with arXiv:1603.08515, arXiv:1603.0834
    • …
    corecore