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Slanted Canonicity of Analytic Inductive Inequalities

LAURENT DE RUDDER, University of Liège, Belgium

ALESSANDRA PALMIGIANO, Vrije Universiteit Amsterdam, Netherlands

We prove an algebraic canonicity theorem for normal LE-logics of arbitrary signature, in a generalized setting

in which the non-lattice connectives are interpreted as operations mapping tuples of elements of the given lat-

tice to closed or open elements of its canonical extension. Interestingly, the syntactic shape of LE-inequalities

which guarantees their canonicity in this generalized setting turns out to coincide with the syntactic shape

of analytic inductive inequalities, which guarantees LE-inequalities to be equivalently captured by analytic

structural rules of a proper display calculus. We show that this canonicity result connects and strengthens

a number of recent canonicity results in two different areas: subordination algebras, and transfer results via

Gödel-McKinsey-Tarski translations.
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1 INTRODUCTION

This article addresses the connection between canonicity problems in two seemingly unrelated
areas, namely subordination algebras and transfer results for nonclassical modal logics via Gödel-
McKinsey-Tarski translations or variations thereof (GMT-type translations). Subordination alge-
bras were introduced in [1] as a generalization of de Vries’ compingent algebras [18] and are
equivalent presentations of pre-contact algebras [19], proximity algebras [21], and quasi-modals
algebras [3, 4]. Canonicity for subordination algebras has been studied in [17] using topological
techniques, in the context of a Sahlqvist-type result obtained in the setting of classical modal
logic for a proper subclass of Sahlqvist formulas, referred to as s-Sahlqvist formulas. The syntactic
shape of s-Sahlqvist formulas guarantees key algebraic/topological properties to their algebraic in-
terpretation, which compensate for the fact that the semantic modal operations on subordination
algebras are not defined on its original algebra, but might map elements of it to closed or open
elements of its canonical extension.
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18:2 L. De Rudder and A. Palmigiano

As to the problem of obtaining Sahlqvist-type results for certain non-classical logics by reduc-
tion to classical Sahlqvist theory by means of GMT-type translations, in [24], the correspondence-
via-translation problem has been completely solved for Sahlqvist inequalities in the signature of
Distributive Modal Logic, but the corresponding canonicity-via-translation problem, reported to
be much harder, was not addressed there, and the canonicity result was obtained following the
methodology introduced by Jónsson [31]. In [16], results on both correspondence-via-translation
and canonicity-via-translation for inductive inequalities in arbitrary signatures of normal distribu-
tive lattice expansions (aka normal DLE-logics) are presented, but the canonicity via translation
is restricted to arbitrary normal expansions of bi-Heyting algebras. The source of the additional
difficulties was identified in the fact that the algebraic interpretations of the S4-modal operators
used to define the GMT-type translations are not defined on each original algebra but might map
elements of it to closed or open elements of its canonical extension.

The two independent problems described above have hence a common root in their involving
operations on canonical extensions of distributive lattice expansions that do not in general re-
strict to clopen elements but map clopens to open or to closed elements. These maps, which we
refer to as slanted maps (cf. Definition 3.1), have been considered in [23, Section 2.3] in the con-
text of a characterization of canonical extensions of maps as continuous extensions w.r.t. certain
topologies, but the canonicity theory of term inequalities involving these maps was not developed
there; interestingly, examples of maps endowed with these weaker topological properties are the
adjoints/residuals of the σ - or π -extensions of normal modal expansions, and their key role in
achieving canonicity results, and specifically in extending Jónsson’s methodology for canonicity
from Sahlqvist to inductive inequalities, was emphasised in [34].

In the present article, we develop the generalized Sahlqvist-type canonicity theory for normal LE-
logics of arbitrary signature, in a setting in which the algebraic interpretations of the connectives
of the expanded signature map elements of the given algebra to closed or open elements of its
canonical extension. Interestingly, the class of formulas/inequalities for which this result holds is
the class of analytic inductive LE-inequalities, introduced in [29] in the context of the theory of
analytic calculi in structural proof theory, to characterize the logics which can be presented by
means of proper display calculi [37].

Perhaps surprisingly, far from being hard, this generalized canonicity result is obtained as
a very smooth refinement of extant generalized Sahlqvist-type canonicity results for LE-logics
(cf. [12, 13]), established within unified correspondence theory [9]. One of the main contributions
of unified correspondence theory is the introduction of an algebraic and algorithmic approach
to the proof of canonicity (and correspondence) results that unifies and uniformly generalizes
the methodologies developed by Jónsson [31], Ghilardi-Meloni [27], Sambin-Vaccaro [36], and
Conradie-Goranko-Vakarelov [10]. The fact that the algebraic and algorithmic approach extends
so smoothly to the present setting (a step-by-step comparison with the algorithmic canonicity
results in standard algebras of [12] and [13] is discussed in Section A) is further evidence of its
robustness.

The generalized canonicity result obtained in this article is then applied to the two canonicity
problems mentioned above. Namely, a strengthening of the canonicity result for subordination al-
gebras of [17] is obtained as a direct application, simply by recognizing that the s-Sahlqvist formu-
las exactly coincide with the analytic 1-Sahlqvist formulas in the classical normal modal/tense logic
signature. Moreover, the canonicity-via-translation result of [16] is extended to normal DLE-logics
in arbitrary signatures for a subclass of analytic inductive inequalities referred to as transferable
(cf. Definition 5.1); the syntactic shape of the formulas in this subclass guarantees that the suitable
parametric translation of each formula in this class is analytic inductive, so that the generalized
canonicity result obtained in this article applies to them.
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Slanted Canonicity of Analytic Inductive Inequalities 18:3

Structure of This Article. In Section 2, we collect preliminary notions, facts, and notation on LE-
logics, their standard1 algebraic semantics, canonical extensions of normal LEs, (analytic) Sahlqvist
and inductive LE-inequalities, and the algorithm ALBA on analytic inductive LE-inequalities. In
Section 3, we introduce slanted LE-algebras and their canonical extensions, define how these struc-
tures can serve as a semantic environment for normal LE-logics, and introduce the notion of slanted
canonicity (or s-canonicity, cf. Definition 3.8). In Section 4, we prove the main result of this article,
namely that analytic inductive LE-inequalities are s-canonical. In Section 5, we apply the main
result of the previous section to extend the transfer result of canonicity to the class of transfer-
able analytic inductive DLE-inequalities. In Section 6, we apply the main result to the setting of
subordination algebras to strengthen the canonicity result of [17]. In Section 7, we discuss fur-
ther directions stemming from the present results. In Section A, we collect the technical lemmas
intervening in the proof of our main result.

2 PRELIMINARIES

In this section, we recall the definition of normal LE-logics (for Lattice Expansion, see Definition 2.4)
and various notions and facts about their algebraic semantics and algorithmic correspondence and
canonicity theory. The material presented here re-elaborates [12, Sections 1, 3, 4], [29, Section 3],
and [6, Section 5].

2.1 Basic Normal LE-logics

Throughout this article, we will make heavy use of the following auxiliary definition: an order-
type2 over n ∈ N is an n-tuple ε ∈ {1, ∂}n . For every order-type ε , we denote its opposite order-
type by ε∂ , that is, ε∂i = 1 iff εi = ∂ for every 1 ≤ i ≤ n. For any lattice A, we let A1 := A and

A∂ be the dual lattice, that is, the lattice associated with the converse partial order of A. For any
order-type ε over n, we let Aε := Πn

i=1A
εi . The language LLE(F ,G), from now on abbreviated as

LLE, takes as parameters: (1) a denumerable set PROP of proposition letters, elements of which
are denoted p,q, r , possibly with indexes; and (2) disjoint sets of connectives F and G. Each f ∈ F

and д ∈ G has arity nf ∈ N (respectively, nд ∈ N) and is associated with some order-type εf over

nf (respectively, εд over nд).3 The terms (formulas) of LLE are defined recursively as follows:

φ ::= p | ⊥ | � | φ ∧ φ | φ ∨ φ | f (φ) | д(φ),

where p ∈ PROP, f ∈ F , д ∈ G. Note that, to simplify notations, for ◦ ∈ F ∪G, we will sometimes

write ◦(φ,ψ ) where φ is used in the coordinates whose order-type is 1 of ◦ and ψ in the ones
whose order-type is ∂. Terms in LLE are denoted either by s, t , or by lowercase Greek letters such
as φ,ψ ,γ , etc. We let L≤

LE denote the set of LLE-inequalities, i.e., expressions of the form φ ≤ ψ

where φ,ψ are LLE-terms, and L
quasi
LE denote the set of LLE-quasi-inequalities, i.e., expressions of

the form (φ1 ≤ ψ1 & · · ·&φn ≤ ψn) ⇒ φ ≤ ψ where φ1, . . . ,φn ,ψ1, . . . ,ψn ,φ,ψ ∈ LLE.

Remark 2.1. We assume that the families F andG are disjoint for the sake of generality. As done
e.g. in [25], elements in F ∩G can be duplicated, and the two copies treated separately, on the basis
of different order-theoretic properties (cf. Remark 2.2).

1We warn the reader of a possible clash in terminology with the fuzzy logic literature, where the expression “standard

algebras” has a technical meaning. Throughout this article, “standard algebras” refers to the well-known universal-algebraic

definition of algebras, and the adjective “standard” is used to emphasise the distinction between algebras as they are usually

defined and the slanted algebras introduced in the present article.
2Throughout this article, order-types will be typically associated with arrays of variables p := (p1, . . . , pn ). When the

order of the variables in p is not specified, we will sometimes abuse notation and write ε (p) = 1 or ε (p) = ∂.
3Unary f (respectively, д) connectives will be typically denoted � (respectively, �) if their order-type is 1, and � (respec-

tively, �) if their order-type is ∂.

ACM Transactions on Computational Logic, Vol. 22, No. 3, Article 18. Publication date: July 2021.



18:4 L. De Rudder and A. Palmigiano

Remark 2.2. The purpose of grouping LE-connectives in the families F and G is to identify–and
refer to–the two types of order-theoretic behaviour which will be relevant for the development
of this theory and are specified in Definition 2.4. The order-theoretic properties defining member-
ship in these families are dual to each other, and are such that, roughly speaking, connectives in
F (respectively, G) can be thought of generalized operators (respectively, dual operators), of which
diamond (respectively, box) in modal logic and fusion in substructural logic (respectively, intuition-
istic implication) are prime examples. We refer to [12] for an extensive illustration of how this clas-
sification can be instantiated in several well known LE-signatures. The order-duality of this classi-
fication is, of course, very convenient for presentation purposes, since it allows to recover one half
of the relevant proofs from the other half, simply by invoking order-duality. However, there is more
to it: as discussed more in detail before Definition 2.8, the order-theoretic properties underlying
the definition of the family F (respectively, G) are strongly linked with the order-theoretic proper-
ties of the σ -extensions (respectively, π -extensions) of the algebraic interpretations of connectives
in F (respectively, G), and especially with their properties of adjunction/residuation, which in turn
are key and have been exploited in other articles (cf., e.g., [29]) also from a proof-theoretic per-
spective for guaranteeing certain key results about proper display calculi (e.g., conservativity, cut
elimination) to hold uniformly. Specific to the results we are presently after, these order-theoretic
properties also guarantee that these σ - and π -extensions will have sufficient topological properties
for our main canonicity result to go through.

Definition 2.3. For any language LLE = LLE(F ,G), an LLE-logic is a set of sequents φ 
 ψ , with
φ,ψ ∈ LLE, which contains the following axioms:

• Sequents for lattice operations:

p 
 p, ⊥ 
 p, p 
 �,

p 
 p ∨ q, q 
 p ∨ q, p ∧ q 
 p, p ∧ q 
 q,

• Sequents for each connective f ∈ F and д ∈ G with nf ,nд ≥ 1:

f (p1, . . . ,⊥, . . . ,pnf
) 
 ⊥, for εf (i) = 1,

f (p1, . . . ,�, . . . ,pnf
) 
 ⊥, for εf (i) = ∂,

� 
 д(p1, . . . ,�, . . . ,pnд
), for εд(i) = 1,

� 
 д(p1, . . . ,⊥, . . . ,pnд
), for εд(i) = ∂,

f (p1, . . . ,p ∨ q, . . . ,pnf
) 
 f (p1, . . . ,p, . . . ,pnf

) ∨ f (p1, . . . ,q, . . . ,pnf
), for εf (i) = 1,

f (p1, . . . ,p ∧ q, . . . ,pnf
) 
 f (p1, . . . ,p, . . . ,pnf

) ∨ f (p1, . . . ,q, . . . ,pnf
), for εf (i) = ∂,

д(p1, . . . ,p, . . . ,pnд
) ∧ д(p1, . . . ,q, . . . ,pnд

) 
 д(p1, . . . ,p ∧ q, . . . ,pnд
), for εд(i) = 1,

д(p1, . . . ,p, . . . ,pnд
) ∧ д(p1, . . . ,q, . . . ,pnд

) 
 д(p1, . . . ,p ∨ q, . . . ,pnд
), for εд(i) = ∂,

and is closed under the following inference rules:

φ 
 χ χ 
 ψ

φ 
 ψ

φ 
 ψ

φ(χ/p) 
 ψ (χ/p)

χ 
 φ χ 
 ψ

χ 
 φ ∧ψ

φ 
 χ ψ 
 χ

φ ∨ψ 
 χ

where φ(χ/p) denotes uniform substitution of χ for p in φ, and for each connective f ∈ F and
д ∈ G,

φ 
 ψ

f (φ1, . . . ,φ, . . . ,φn) 
 f (φ1, . . . ,ψ , . . . ,φn)
(εf (i) = 1)

φ 
 ψ

f (φ1, . . . ,ψ , . . . ,φn) 
 f (φ1, . . . ,φ, . . . ,φn)
(εf (i) = ∂)

ACM Transactions on Computational Logic, Vol. 22, No. 3, Article 18. Publication date: July 2021.



Slanted Canonicity of Analytic Inductive Inequalities 18:5

φ 
 ψ

д(φ1, . . . ,φ, . . . ,φn) 
 д(φ1, . . . ,ψ , . . . ,φn)
(εд(i) = 1)

φ 
 ψ

д(φ1, . . . ,ψ , . . . ,φn) 
 д(φ1, . . . ,φ, . . . ,φn)
(εд(i) = ∂).

The minimal LLE(F ,G)-logic is denoted by LLE(F ,G), or simply by LLE when F and G are clear
from the context.

The standard algebraic semantics of LE-logics is given as follows:

Definition 2.4. For any LE-signature LLE = LLE(F ,G), an LLE-algebra is a tuple A =

(A,F A,GA) such that A is a bounded lattice, F A = { f A | f ∈ F } and GA = {дA | д ∈ G},
such that every f A ∈ F A (respectively, дA ∈ GA) is an nf -ary (respectively, nд-ary) operation on

A. A lattice expansion4 is normal if every f A ∈ F A (respectively, дA ∈ GA) preserves finite (hence
also empty) joins (respectively, meets) in each coordinate with εf (i) = 1 (respectively, εд(i) = 1)
and reverses finite (hence also empty) meets (respectively, joins) in each coordinate with εf (i) = ∂
(respectively, εд(i) = ∂).

In what follows, we will generically refer to algebras in the definition above as LEs when it is
not important to emphasize the specific signature, and as LLE-algebras when it is. Standard LEs
as defined above are not the main focus of this article, which is rather the non-standard algebraic
semantics of normal LE-logics, which we discuss in Section 3.

2.2 Perfect LEs and Standard Canonical Extensions

Definition 2.5. Let A be a (bounded) sublattice of a complete lattice A′.

(1) A is dense in A′ if every element of A′ can be expressed both as a join of meets and as a meet
of joins of elements from A.

(2) A is compact in A′ if, for all S,T ⊆ A, if
∧
S ≤

∨
T , then

∧
S ′ ≤

∨
T ′ for some finite S ′ ⊆ S

and T ′ ⊆ T .
(3) The canonical extension of a lattice A is a complete lattice Aδ containing A as a dense and

compact sublattice.

For any lattice A, its canonical extension, besides being unique up to an isomorphism fixing A,
always exists (cf. [22, Propositions 2.6 and 2.7]5).

Definition 2.6. A complete lattice A is perfect if A is both completely join-generated by the set
J∞(A) of the completely join-irreducible elements of A, and completely meet-generated by the set
M∞(A) of the completely meet-irreducible elements of A.

4 Normal LEs are sometimes referred to as lattices with operators (LOs). This terminology derives from the setting of Boolean

algebras with operators, in which operators are understood as operations which preserve finite (hence also empty) joins

in each coordinate. Thanks to the Boolean negation, operators are typically taken as primitive connectives, and all the

other modal operations are reduced to these. However, this terminology is somewhat ambiguous in the lattice setting, in

which primitive operations are typically maps which are operators if seen as Aε → Aη for some order-type ε on n and

some order-type η ∈ {1, ∂}. Rather than speaking of lattices with (ε, η)-operators, we then speak of normal LEs. This

terminology is also used in other articles, e.g., [16]. For the sake of internal consistency, we stick with the name “Boolean

Algebra Expansion” in Section 6.
5In [22], the proof of the existence of the canonical extension is constructive, and is based on the complete lattice of Galois-

stable sets of the polarity (A, X , I ), where A and X , respectively, are the sets of filters and ideals of the given lattice, and

I the relation of having non-empty intersection, as in the lattice representation of Hartonas and Dunn [30].

ACM Transactions on Computational Logic, Vol. 22, No. 3, Article 18. Publication date: July 2021.



18:6 L. De Rudder and A. Palmigiano

Denseness implies that J∞(Aδ ) is contained in the meet closure K(Aδ ) of A in Aδ and that
M∞(Aδ ) is contained in the join closureO(Aδ ) of A in Aδ [20]. The elements of K(Aδ ) are referred
to as closed elements, and elements of O(Aδ ) as open elements. The canonical extension of an LE
A will be defined as a suitable expansion of the canonical extension of the underlying lattice of A.
Before turning to this definition, recall that taking the canonical extension of a lattice commutes

with taking order-duals and products, namely: (A∂)
δ
= (Aδ )

∂
and (A1 ×A2)

δ = Aδ
1 × Aδ

2 (cf. [20,

Theorem 2.8]). Hence, (An)δ can be identified with (Aδ )
n

and (Aε )δ with (Aδ )
ε

for any order-type ε .
Thanks to these identifications, in order to extend operations of any arity which are monotone

or antitone in each coordinate from a lattice A to its canonical extension, treating the case of
monotone and unary operations suffices:

Definition 2.7. For every unary, order-preserving operation f : A → A, the σ -extension of f is
defined first by declaring, for every k ∈ K(Aδ ),

f σ (k) :=
∧

{ f (a) | a ∈ A and k ≤ a},

and then, for every u ∈ Aδ ,

f σ (u) :=
∨

{ f σ (k) | k ∈ K(Aδ ) and k ≤ u}.

The π -extension of f is defined first by declaring, for every o ∈ O(Aδ ),

f π (o) :=
∨

{ f (a) | a ∈ A and a ≤ o},

and then, for every u ∈ Aδ ,

f π (u) :=
∧

{ f π (o) | o ∈ O(Aδ ) and u ≤ o}.

Key to the use of canonical extensions in logic (e.g., for proving semantic completeness via
canonicity, as well as for the proof-theoretic results mentioned in Remark 2.2) are certain basic
desiderata that canonical extensions must satisfy. These desiderata start from the condition that
the canonical extension of a given LLE-algebra must also be an LLE-algebra, and that, moreover,
the canonical extension of an LLE-algebra must be a perfect (respectively, complete, in the con-
structive setting) LLE-algebra (cf. Definition 2.9 below). The first desideratum is met immediately
whenever all connectives in the given signature LLE are smooth, i.e., their σ - and π -extensions co-
incide. While unary normal connectives are smooth, (see, e.g., [22, Lemma 4.4]), connectives with
arity greater than 1 are typically non-smooth (see, e.g., [26, Example 4.6]). Hence, whenever LLE

includes non-smooth connectives, to satisfy the first desideratum one needs to decide whether to
define the canonical extensions of LLE-algebras by taking, for each connective in LLE, either its
σ - or its π -extension. Our choice is guided by the second desideratum: it is easy to see that the
σ - and π -extensions of ε-monotone maps are ε-monotone; moreover, the σ -extension of a map
which coordinate-wise preserves finite joins or reverses finite meets will coordinate-wise preserve
arbitrary joins or reverse arbitrary meets, and dually, the π -extension of a map which coordinate-
wise preserves finite meets or reverses finite joins will coordinate-wise preserve arbitrary meets
or reverse arbitrary joins (see [22, Lemma 4.6]). Therefore, defining the canonical extension of an
LLE-algebra by choosing the σ -extensions of operations in F A and the π -extensions of operations
in GA will guarantee both the first and the second desideratum.6 These considerations motivate
the following:

6For some discussion on this and the importance of choosing the appropriate extension, we refer the reader to

[24, Section 7].
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Slanted Canonicity of Analytic Inductive Inequalities 18:7

Definition 2.8. The canonical extension of an LLE-algebra A = (A,F A,GA) is the LLE-algebra

Aδ := (Aδ ,F A
δ
,GA

δ
) such that f A

δ
and дA

δ
are defined as the σ -extension of f A and as the

π -extension of дA respectively, for all f ∈ F and д ∈ G.

As mentioned in the previous discussion, defined as indicated above, the canonical extension of
an LLE-algebra A can be shown to be a perfect LLE-algebra:

Definition 2.9. An LE A = (A,F A,GA) is perfect if A is a perfect lattice (cf. Definition 2.6), and
moreover the following infinitary distribution laws are satisfied for each f ∈ F , д ∈ G, 1 ≤ i ≤ nf

and 1 ≤ j ≤ nд : for every S ⊆ A,

f (x1, . . . ,
∨
S, . . . ,xnf

) =
∨
{ f (x1, . . . ,x , . . . ,xnf

) | x ∈ S} if εf (i) = 1;

f (x1, . . . ,
∧
S, . . . ,xnf

) =
∨
{ f (x1, . . . ,x , . . . ,xnf

) | x ∈ S} if εf (i) = ∂;
д(x1, . . . ,

∧
S, . . . ,xnд

) =
∧
{д(x1, . . . ,x , . . . ,xnд

) | x ∈ S} if εд(i) = 1;

д(x1, . . . ,
∨
S, . . . ,xnд

) =
∧
{д(x1, . . . ,x , . . . ,xnд

) | x ∈ S} if εд(i) = ∂.

Before finishing the present subsection, let us spell out and further simplify the definitions of
the extended operations. First of all, we recall that taking the order-dual interchanges closed and

open elements: K((Aδ )
∂
) � O(Aδ ) and O((Aδ )

∂
) � K(Aδ ); similarly, K((An)δ ) � K(Aδ )n , and

O((An)δ ) � O(Aδ )n . Hence, K((Aδ )
ε
) �

∏
i K(A

δ )ε (i) and O((Aδ )
ε
) �

∏
i O(A

δ )ε (i) for every LE A
and every order-type ε on any n ∈ N, where

K(Aδ )ε (i) :=

{
K(Aδ ) if ε(i) = 1

O(Aδ ) if ε(i) = ∂
O(Aδ )ε (i) :=

{
O(Aδ ) if ε(i) = 1

K(Aδ ) if ε(i) = ∂.

Denoting by ≤ε the product order on (Aδ )ε , we have for every f ∈ F , д ∈ G, k ∈ K((Aδ )
εf
),

o ∈ O((Aδ )
εf
) u ∈ (Aδ )nf and v ∈ (Aδ )nд ,

f σ (k) :=
∧
{ f (a) | a ∈ Aεf and k ≤εf a} f σ (u) :=

∨
{ f σ (k) | k ∈ K((Aδ )

εf
) and k ≤εf u}

дπ (o) :=
∨
{д(a) | a ∈ Aεд and a ≤εд o} дπ (v) :=

∧
{дπ (o) | o ∈ O((Aδ )

εд
) and v ≤εд o}.

The algebraic completeness of LLE and the canonical embedding of LEs into their canonical
extensions immediately yield completeness of LLE w.r.t. the appropriate class of perfect LEs.

2.3 Inductive and Sahlqvist (Analytic) LE-Inequalities

In this section, we recall the definitions of inductive and Sahlqvist LE-inequalities introduced
in [12] and their corresponding “analytic” restrictions introduced in [29] in the distributive set-
ting and then generalized to the setting of LEs of arbitrary signatures in [28]. Each inequality in
any of these classes is canonical and elementary (cf. [12, Theorems 8.8 and 8.9]).

Definition 2.10 (Signed Generation Tree). The positive (respectively, negative) generation tree of
any LLE-term s is defined by labelling the root node of the generation tree of s with the sign +
(respectively, −), and then propagating the labelling on each remaining node as follows:

• For any node labelled with ∨ or ∧, assign the same sign to its children nodes.
• For any node labelled with h ∈ F ∪ G of arity nh ≥ 1, and for any 1 ≤ i ≤ nh , assign

the same (respectively, the opposite) sign to its ith child node if εh(i) = 1 (respectively, if
εh(i) = ∂).

Nodes in signed generation trees are positive (respectively, negative) if are signed + (respec-
tively, −).

Signed generation trees will be mostly used in the context of term inequalities s ≤ t . In this
context, we will typically consider the positive generation tree +s for the left-hand side and the
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18:8 L. De Rudder and A. Palmigiano

Table 1. Skeleton and PIA Nodes for LE

Skeleton PIA

Δ-adjoints Syntactically Right Adjoint (SRA)
+ ∨

− ∧

+ ∧ д with nд = 1
− ∨ f with nf = 1

Syntactically Left Residual (SLR) Syntactically Right Residual (SRR)
+ f with nf ≥ 1
− д with nд ≥ 1

+ д with nд ≥ 2
− f with nf ≥ 2

negative one −t for the right-hand side. We will also say that a term-inequality s ≤ t is uniform
in a given variable p if all occurrences of p in both +s and −t have the same sign, and that s ≤ t
is ε-uniform in a (sub)array p of its variables if s ≤ t is uniform in every p in p, occurring with
the sign indicated by ε . With a routine proof by induction, one can show that if a term-inequality
s ≤ t is 1-uniform (respectively, ∂-uniform) in a given variablep, then the term-function associated
with s (see Definitions 2.4 and 3.1) is order-preserving (respectively, order-reversing) in p, and the
term-function associated with t is order-reversing (respectively, order-preserving) in p. Therefore,
the validity of s(p) ≤ t(p) is equivalent to the validity of s(�) ≤ t(�) (respectively, s(⊥) ≤ t(⊥)).7

This observation is easily generalised to an arbitrary subarray of variables of s ≤ t .
For any term s(p1, . . .pn), any order-type ε over n, and any 1 ≤ i ≤ n, an ε-critical node in a

signed generation tree of s is a leaf node +pi if ε(i) = 1 and −pi if ε(i) = ∂. An ε-critical branch in
the tree is a branch from an ε-critical node. Variable occurrences corresponding to ε-critical nodes
are to be solved for (cf. Section 2.6).

For every term s(p1, . . .pn) and every order-type ε , we say that +s (respectively, −s) agrees with
ε , and write ε(+s) (respectively, ε(−s)), if every leaf in the signed generation tree of+s (respectively,
−s) is ε-critical. We will also write +s ′ ≺ ∗s (respectively, −s ′ ≺ ∗s) to indicate that the subterm
s ′ inherits the positive (respectively, negative) sign from the signed generation tree ∗s . Finally, we
will write ε(γ ) ≺ ∗s (respectively, ε∂(γ ) ≺ ∗s) to indicate that the signed subtree γ , with the sign
inherited from ∗s , agrees with ε (respectively, with ε∂).

We will write φ(!x) (respectively, φ(!x)) to indicate that the variable x (respectively, each vari-
able x in x ) occurs exactly once in φ. Accordingly, we will write φ[γ/!x] (respectively, φ[γ/!x])
to indicate the formula obtained by substituting γ (respectively, each term γ in γ ) for the unique
occurrence of (its corresponding variable) x in φ.

Definition 2.11. Nodes in signed generation trees will be called Δ-adjoints, syntactically left resid-
ual (SLR), syntactically right residual (SRR), and syntactically right adjoint (SRA), according to the
specification given in Table 1. A branch in a signed generation tree ∗s , with ∗ ∈ {+,−}, is called
a good branch if it is the concatenation of two paths P1 and P2, one of which may possibly be of
length 0, such that P1 is a path from the leaf consisting (apart from variable nodes) only of PIA-
nodes, and P2 consists (apart from variable nodes) only of Skeleton-nodes. A branch is excellent if
it is good and in P1 there are only SRA-nodes. A good branch is Skeleton if the length of P1 is 0
(hence, Skeleton branches are excellent), and is SLR, or definite, if P2 only contains SLR nodes.

We refer to [12, Remark 3.3] and [24, Section 3] for a discussion about the notational conventions
and terminology.

7As noticed in [11, Remark 6.3], these equivalences are in fact instances of the Ackermann Lemmas where the p-variant

assignment v ′ is such that v ′(p) = � (if s ≤ t is 1-uniform) or v ′(p) = ⊥ (if s ≤ t is ∂-uniform).
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Example 2.12. The language LLE of bi-intuitionistic modal logic is obtained by instantiating
F = {�, ��−} and G = {�,→} with n� = n� = 1, n��− = n→ = 2 and ε� = ε� = 1, ε��− = ε→ = (∂, 1).
In this language, the signed generation trees associated with the inequality

��p ∨ q ≤ ��q ∧ (�r ��− p)

are represented in the following diagram, where PIA nodes occur inside dashed rectangles and
Skeleton nodes inside continuous ones.

+ −

+∨

+�

+�

+p

+q

−∧

≤

−�

−�

−q

+�

− ��−

+r

−p

The inequality above is not uniform in p and q (each of the variables has a positive occurrence
and a negative one), but is uniform in r (in this particular case because r occurs only once). If we
consider the order-type ε on (p,q, r ) given by ε = (1, 1, ∂), the critical nodes in the generations
trees are +p and +q. There is no ε-critical occurrence of r . The term +s := +(��p ∨q) agrees with
ε , while the term −t = −(��q ∧ (�r ��− p)) agrees with ε∂ . Now, for the subterms t ′ := �r and
t ′′ := �r ��− p of t , we have +t ′ ≺ −t and −t ′′ ≺ −t . Moreover, ε∂(t ′) ≺ −t and ε∂(t ′′) ≺ −t .

The branches which end in+p,+q, and−p are good since, traversing the corresponding branches
starting from the root, we first encounter Skeleton nodes and then only PIA nodes. The branches
ending in +p and +q are also excellent because they do not contain SRR nodes (the only SRR node
occurring in this example is − ��−). The branch which ends in +q is in particular Skeleton since it
contains no occurrences of PIA nodes (the length of P1 is 0). Finally, the branches which end in −q
and +r are not good, since (again starting from the root) a Skeleton node (−�, +�) occurs in the
scope of a PIA node (−�, − ��−).

Definition 2.13 (Inductive Inequalities). For any order-type ε and any irreflexive and transitive
relation (i.e., strict partial order) Ω on p1, . . . ,pn , the signed generation tree ∗s (∗ ∈ {−,+}) of a
term s(p1, . . . ,pn) is (Ω, ε)-inductive if

(1) for all 1 ≤ i ≤ n, every ε-critical branch with leaf pi is good (cf. Definition 2.11);
(2) everym-ary SRR-node occurring in the critical branch is of the form

�(γ1, . . . ,γj−1, β,γj+1 . . . ,γm),

where for any h ∈ {1, . . . ,m} \ j:

(a) ε∂(γh) ≺ ∗s (cf. discussion before Definition 2.11), and
(b) pk <Ω pi for every pk occurring in γh and for every 1 ≤ k ≤ n.

We will refer to <Ω as the dependency order on the variables. An inequality s ≤ t is (Ω, ε)-
inductive if the signed generation trees +s and −t are (Ω, ε)-inductive. An inequality s ≤ t is
inductive if it is (Ω, ε)-inductive for some Ω and ε .

In what follows, we refer to formulas φ such that only PIA nodes occur in +φ (respectively, −φ)
as positive (respectively, negative) PIA-formulas, and to formulas ξ such that only Skeleton nodes
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occur in +ξ (respectively, −ξ ) as positive (respectively, negative) Skeleton-formulas. PIA formulas
∗φ in which no nodes +∧ and −∨ occur are referred to as definite. Skeleton formulas ∗ξ in which
no nodes −∧ and +∨ occur are referred to as definite.

Definition 2.14. For an order-type ε , the signed generation tree ∗s , ∗ ∈ {−,+}, of a term
s(p1, . . . ,pn) is ε-Sahlqvist if every ε-critical branch is excellent. An inequality s ≤ t is ε-Sahlqvist
if the trees +s and −t are both ε-Sahlqvist. An inequality s ≤ t is Sahlqvist if it is ε-Sahlqvist for
some ε .

Definition 2.15 (Analytic inductive and analytic Sahlqvist inequalities). For every order-type ε and
every irreflexive and transitive relation Ω on the variables p1, . . . ,pn , the signed generation tree ∗s
(∗ ∈ {+,−}) of a term s(p1, . . . ,pn) is analytic (Ω, ε)-inductive (respectively, analytic ε-Sahlqvist) if

(1) ∗s is (Ω, ε)-inductive (respectively, ε-Sahlqvist);
(2) every branch of ∗s is good (cf. Definition 2.11).

An inequality s ≤ t is analytic (Ω, ε)-inductive (respectively, analytic ε-Sahlqvist) if+s and−t are
both analytic (Ω, ε)-inductive (respectively, analytic ε-Sahlqvist). An inequality s ≤ t is analytic
inductive (respectively, analytic Sahlqvist) if is analytic (Ω, ε)-inductive (respectively, analytic ε-
Sahlqvist) for some Ω and ε (respectively, for some ε).

Example 2.16. In light of the previous definitions and the discussion in Example 2.12, the modal
bi-intuitionistic inequality ��p ∨ q ≤ ��q ∧ (�r ��− p) is ε-Sahlqvist (and hence inductive) for
ε(p,q, r ) = (1, 1, ∂). However, it is not analytic since the negative generation tree of its right-hand
side contains branches which are not good.

Notation 2.17. Following [6], we will sometimes represent (Ω, ε)-analytic inductive inequalities
as follows:

(φ ≤ ψ )[α/!x , β/!y,γ/!z,δ/!w],

where (φ ≤ ψ )[!x , !y, !z, !w] is the Skeleton of the given inequality, α (respectively, β) denotes the

positive (respectively, negative) maximal PIA-subformulas, i.e., each α in α and β in β contains at
least one ε-critical occurrence of some propositional variable, and moreover:

(1) for each α ∈ α , either +α ≺ +φ or +α ≺ −ψ ;

(2) for each β ∈ β , either −β ≺ +φ or −β ≺ −ψ ,

and γ (respectively, δ ) denotes the positive (respectively, negative) maximal ε∂-subformulas, i.e.:

(1) for each γ ∈ γ , either +γ ≺ +φ or +γ ≺ −ψ ;

(2) for each δ ∈ δ , either −δ ≺ +φ or −δ ≺ −ψ .

For the sake of a more compact notation, in what follows we sometimes write (φ ≤ ψ )[α , β ,γ ,δ ]
in place of

(φ ≤ ψ )[α/!x , β/!y,γ/!z,δ/!w].

Remark 2.18 (The Distributive Setting). When interpreting LE-languages on perfect distribu-
tive lattice expansions (DLEs), the logical disjunction is interpreted by means of the coordinate-
wise completely ∧-preserving join operation of the lattice, and the logical conjunction with the
coordinate-wise completely ∨-preserving meet operation of the lattice. Hence, we are justified in
listing +∧ and −∨ among the SLRs, and +∨ and −∧ among the SRRs, as is done in Table 2.

Consequently, we obtain enlarged classes of Sahlqvist and inductive inequalities by simply ap-
plying Definitions 2.11, 2.14, and 2.13, with respect to Table 2.
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Table 2. Skeleton and PIA Nodes for LDLE

Skeleton PIA

Δ-adjoints SRA
+ ∨

− ∧

+ ∧ д with nд = 1
− ∨ f with nf = 1

SLR SRR
+ ∧ f with nf ≥ 1
− ∨ д with nд ≥ 1

+ ∨ д with nд ≥ 2
− ∧ f with nf ≥ 2

2.4 Basic LE-language Expanded with Residuals

We now introduce an expansion of the language LLE(F ,G) with connectives which are to be
interpreted as the residuals in each coordinate (cf. Definition 2.20) of the connectives in F and G.
This is the first of two expansion steps (the second of which being described in Section 2.5) which
lead to the language L+LE(F ,G) (see Section 2.5) in which the ALBA-reductions take place.

Formally, any given language LLE = LLE(F ,G) can be associated with the language L∗
LE =

LLE(F
∗,G∗), where F ∗ ⊇ F and G∗ ⊇ G are obtained by expanding LLE with the following

connectives:

(1) the nf -ary connective f �i for 1 ≤ i ≤ nf , the intended interpretation of which is the right
residual of f ∈ F in its ith coordinate if εf (i) = 1 (respectively, its Galois-adjoint if εf (i) = ∂);

(2) the nд-ary connective д�i for 1 ≤ i ≤ nд , the intended interpretation of which is the left
residual of д ∈ G in its ith coordinate if εд(i) = 1 (respectively, its Galois-adjoint if εд(i) = ∂).

We stipulate that f �i ∈ G∗ if εf (i) = 1, and f �i ∈ F ∗ if εf (i) = ∂. Dually, д�i ∈ F ∗ if εд(i) = 1, and

д�i ∈ G∗ if εд(i) = ∂. The order-type assigned to the additional connectives is predicated on the
order-type of their intended interpretations. That is, for any f ∈ F and д ∈ G,

(1) if εf (i) = 1, then ε
f
�

i

(i) = 1 and ε
f
�

i

(j) = ε∂
f
(j) for any j � i;

(2) if εf (i) = ∂, then ε
f
�

i

(i) = ∂ and ε
f
�

i

(j) = εf (j) for any j � i;

(3) if εд(i) = 1, then εд�
i
(i) = 1 and εд�

i
(j) = ε∂д (j) for any j � i;

(4) if εд(i) = ∂, then εд�
i
(i) = ∂ and εд�

i
(j) = εд(j) for any j � i .

For instance, if f and д are binary connectives such that εf = (1, ∂) and εд = (∂, 1), then
ε

f
�

1

= (1, 1), ε
f
�

2

= (1, ∂), εд�
1
= (∂, 1) and εд�

2
= (1, 1).

Remark 2.19. We warn the reader that the notation introduced above depends on which con-
nective is taken as primitive, and needs to be carefully adapted to well-known cases. For instance,
consider the “usion” connective ◦ (which, when denoted as f , is such that εf = (1, 1)). Its residuals

f �1 and f �2 are commonly denoted / and \, respectively. However, if \ is taken as the primitive con-

nective д, then д�2 is ◦ = f , and д�1 (x1,x2) := x2/x1 = f �1 (x2,x1). This example shows that, when

identifying д�1 and f �1 , the conventional order of the coordinates is not preserved, and depends on
which connective is taken as primitive.

Definition 2.20. For any language LLE(F ,G), the basic LLE-logic with residuals is defined by
specializing Definition 2.3 to the language L∗

LE = LLE(F
∗,G∗) and closing under the following

residuation rules for each f ∈ F and д ∈ G with nf ,nд ≥ 1:
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(εf (i) = 1)
(φ1, . . . ,φ, . . . ,φnf

) 
 ψ

φ 
 f �i (φ1, . . . ,ψ , . . . ,φnf
)

φ 
 д(φ1, . . . ,ψ , . . . ,φnд
)

φ 
 д(φ1, . . . ,ψ , . . . ,φnд
)
(εд(i) = 1)

(εf (i) = ∂)
f (φ1, . . . ,φ, . . . ,φnf

) 
 ψ

f �i (φ1, . . . ,ψ , . . . ,φnf
) 
 φ

φ 
 д(φ1, . . . ,ψ , . . . ,φnд
)

ψ 
 д�i (φ1, . . . ,φ, . . . ,φnд
)
(εд(i) = ∂).

The double line in each rule above indicates that the rule should be read both top-to-bottom
and bottom-to-top. Let L∗

LE be the minimal basic LLE-logic with residuals. For any language LLE,
by an LLE-logic with residuals we understand any axiomatic extension of the basic LLE-logic with
residuals in L∗

LE.

The algebraic semantics of L∗
LE is given by the class of LLE-algebras with residuals, defined as

tuples A = (A,F ∗,G∗) such that A is a lattice, and moreover,

(1) for every f ∈ F s.t. nf ≥ 1, all a1, . . . ,anf
∈ A and b ∈ A, and each 1 ≤ i ≤ nf ,

• if εf (i) = 1, then f (a1, . . . ,ai , . . . anf
) ≤ b iff ai ≤ f �i (a1, . . . ,b, . . . ,anf

);

• if εf (i) = ∂, then f (a1, . . . ,ai , . . . anf
) ≤ b iff ai ≤

∂ f �i (a1, . . . ,b, . . . ,anf
).

We say that f �i is the right residual of f in its ith coordinate.

(2) for every д ∈ G s.t. nд ≥ 1, any a1, . . . ,anд
∈ A and b ∈ A, and each 1 ≤ i ≤ nд ,

• if εд(i) = 1, then b ≤ д(a1, . . . ,ai , . . . anд
) iff д�i (a1, . . . ,b, . . . ,anд

) ≤ ai .

• if εд(i) = ∂, then b ≤ д(a1, . . . ,ai , . . . anд
) iff д�i (a1, . . . ,b, . . . ,anд

) ≤∂ ai .

We say that д�i is the left residual of д in its ith coordinate.

It is also routine to prove using the Lindenbaum-Tarski construction that L∗
LE (as well as any of its

axiomatic extensions) is sound and complete w.r.t. the class of LLE-algebras with residuals (w.r.t.
the suitably defined equational subclass, respectively).

Definition 2.21. For every definite positive PIA LLE-formula φ = φ(!x , z), and any definite neg-
ative PIA LLE-formula ψ = ψ (!x , z) such that x occurs in them exactly once, the L∗

LE-formulas
LA(φ)(u, z) and RA(ψ )(u, z) (for u ∈ Var − (x ∪ z)) are defined by simultaneous recursion as fol-
lows:

LA(x) = u;

LA(д(φ−j (z),φ j (x , z),ψ (z))) = LA(φ j )(д
�
j (φ−j (z),u,ψ (z)), z);

LA(д(φ(z),ψ−j (z),ψj (x , z))) = RA(ψj )(д
�
j (φ(z),ψ−j (z),u), z);

RA(x) = u;

RA(f (ψ−j (z),ψj (x , z),φ(z))) = RA(ψj )(f
�

j (ψ−j (z),u,φ(z)), z);

RA(f (ψ (z),φ−j (z),φ j (x , z))) = LA(φ j )(f
�

j (ψ (z),φ−j (z),u), z).

Above, φ−j denotes the vector obtained by removing the jth coordinate of φ.

Lemma 2.22. For every definite positive PIA LLE-formula φ = φ(!x , z), and any definite negative
PIA LLE-formulaψ = ψ (!x , z) such that x occurs in them exactly once,

(1) if +x ≺ +φ, then LA(φ)(u, z) is monotone in u and for each z in z, LA(φ)(u, z) has the opposite
polarity to the polarity of φ in z;

(2) if −x ≺ +φ, then LA(φ)(u, z) is antitone in u and for each z in z, LA(φ)(u, z) has the same
polarity as φ in z;
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(3) if +x ≺ +ψ , then RA(ψ )(u, z) is monotone in u and for each z in z, RA(ψ )(u, z) has the opposite
polarity to the polarity ofψ in z;

(4) if −x ≺ +ψ , then RA(ψ )(u, z) is antitone in u and for each z in z, RA(ψ )(u, z) has the same
polarity asψ in z.

Proof. By simultaneous induction on φ and ψ . If φ = ψ = x , then the assumptions of items
(1) and (3) are satisfied; then RA(ψ ) = LA(φ) = u is clearly monotone in u and the second part of

the statement is vacuously satisfied. As to the inductive step, if φ(!x , z) = д(φ ′
−j (z),φ

′
j (x , z),ψ

′(z)),

with each φ ′ in φ ′ being positive PIA and each ψ ′ in ψ ′ being negative PIA, then д�j ∈ F ∗ is

monotone in its jth coordinate and has the opposite polarity of εд in all the other coordinates.

Hence, д�j (φ
′
−j (z),u,ψ

′(z)) has the opposite polarity of φ(!x , z) in each z in z. Two cases can occur:

(a) If +x ≺ +φ j , then by induction hypothesis, LA(φ j )(u
′, z) is monotone inu ′, and has the opposite

polarity of φ j in every z in z. Hence,

LA(φ) = LA(φ j )(д
�
j (φ

′
−j (z),u,ψ

′(z))/u ′, z)

is monotone in u and has the opposite polarity to the polarity of φ in each z in z. (b) If −x ≺ +φ j ,
then by induction hypothesis, LA(φ j )(u

′, z) is antitone in u ′, and has the same polarity as φ j in
every z in z. Hence,

LA(φ) = LA(φ j )(д
�
j (φ

′
−j (z),u,ψ

′(z))/u ′, z)

is antitone in u and has the same polarity as φ in each z in z. The remaining cases are φ :=

д(φ ′(z),ψ ′
−h
(z),ψh(x , z)), ψ := f (φ ′

−j (z),φ
′
j (x , z),ψ

′(z)), and ψ := f (φ ′(z),ψ ′
−h
(z),ψ ′

h
(x , z)) and are

shown in a similar way. �

2.5 The Language of Non-Distributive ALBA

The expanded language of perfect LEs will include the connectives corresponding to all the residual
of the original connectives, as well as a denumerably infinite set of sorted variables NOM called
nominals, ranging over the completely join-irreducible elements of perfect LEs (or, constructively,
on the closed elements of the constructive canonical extensions, as in [13]), and a denumerably
infinite set of sorted variables CO-NOM, called co-nominals, ranging over the completely meet-
irreducible elements of perfect LEs (or, constructively on the open elements of the constructive
canonical extensions). The elements of NOM will be denoted with i, j, possibly indexed, and those
of CO-NOM with m,n, possibly indexed.

Let us introduce the expanded language formally: the formulas φ of L+LE are given by the follow-
ing recursive definition:

φ ::= j m ψ φ ∧ φ φ ∨ φ f (φ) д(φ)

with ψ ∈ LLE, j ∈ NOM and m ∈ CO-NOM, f ∈ F ∗ and д ∈ G∗. As in the case of LLE, we
can form inequalities and quasi-inequalities based on L+LE. If A is a perfect LE, then an assignment
for L+LE on A is a map V : PROP ∪ NOM ∪ CO-NOM → A sending propositional variables to
elements ofA, sending nominals to J∞(A) and co-nominals to M∞(A). For any LEA, an admissible

assignment for L+LE onA is an assignmentV for L+LE onAδ , such thatV (p) ∈ A for each p ∈ PROP.
In other words, the assignment V sends propositional variables to elements of the subalgebra A,
while nominals and co-nominals get sent to the completely join-irreducible (respectively, closed)
and the completely meet-irreducible (respectively, open) elements of Aδ , respectively.
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2.6 Non-Distributive ALBA on Analytic Inductive LE-inequalities

In this subsection, we describe a successful ALBA-run on an analytic (Ω, ε)-inductive LLE-
inequality φ ≤ ψ . The procedure described below serves both to compute the first order corre-
spondent of the given inequality in various semantic settings, as discussed, e.g., in [8], [11], [12],
and [14], and to compute the shape of the analytic structural rules corresponding to the given
inequality, as discussed in [6] and [29] .

The run proceeds in three stages. The first stage preprocessesφ ≤ ψ by eliminating all uniformly
occurring propositional variables, and applying distribution and splitting rules exhaustively. This
produces a finite set of inequalities, φ ′

i ≤ ψ ′
i , 1 ≤ i ≤ n, from which ALBA forms the initial

quasi-inequalities.
The second stage (called the reduction stage) transforms the quasi-inequalities through the ap-

plication of transformation rules, which are listed below. The aim is to eliminate all propositional
variables in favour of terms built from constants, nominals, and co-nominals (for an expanded
discussion on the general reduction strategy, the reader is referred to [9] and [15]). A system
for which this has been done will be called pure or purified. The actual eliminations are effected
through the Ackermann-rules, while the other rules are used to bring the quasi-inequalities into
the appropriate shape which make these applications possible.

The third stage either reports failure if some system could not be purified, or else returns the
conjunction of the pure quasi-inequalities which we denote by ALBA(φ ≤ ψ ). We now outline
each of the three stages in more detail.

2.7 Stage 1: Preprocessing and Initialization

ALBA Receives an Analytic (Ω, ε)-inductive LLE-inequality φ ≤ ψ as input. It applies the follow-
ing rules for elimination of monotone variables to φ ≤ ψ exhaustively, in order to eliminate any
propositional variables which occur uniformly:

α(p) ≤ β(p)

α(�) ≤ β(�)

γ (p) ≤ δ (p)

γ (⊥) ≤ δ (⊥)

for α(p) ≤ β(p) 1-uniform in p and γ (p) ≤ δ (p) ∂-uniform in p, respectively (see the discussion
after Definition 2.10).

Next, ALBA exhaustively distributes f ∈ F over +∨ in its positive coordinates and over −∧ in
its negative coordinates, and д ∈ G over −∧ in its positive coordinates and over +∨ in its negative
coordinates, so as to bring occurrences of +∨ and −∧ to the surface wherever this is possible, and
then eliminate them via exhaustive applications of splitting rules.

Splitting-Rules.

α ≤ β ∧ γ

α ≤ β α ≤ γ

α ∨ β ≤ γ

α ≤ γ β ≤ γ

This gives rise to a set of definite analytic inductive inequalities {φ ′
i ≤ ψ ′

i | 1 ≤ i ≤ n}, each of
which will be treated separately.

Next, in each PIA-subformula of each such definite analytic inductive inequality, ALBA exhaus-
tively distributes −f ∈ F over −∨ in its positive coordinates and over +∧ in its negative coordi-
nates, and +д ∈ G over +∧ in its positive coordinates and over −∨ in its negative coordinates, so
as to bring occurrences of −∨ and +∧ as close as possible to the root of each PIA subformula. Let

(φ ≤ ψ )[α/!x , β/!y,γ/!z,δ/!w] denote one of the inequalities resulting from this step (we suppress

the indices). Now ALBA transforms (φ ≤ ψ )[α/!x , β/!y,γ/!z,δ/!w] into the following initial quasi-
inequality (the soundness of these steps on perfect LEs, or constructive canonical extensions, has
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been discussed in [12, Section 6] and [13, Section 5]):

∀j∀m∀i∀n((j ≤ α & β ≤ m & i ≤ γ & δ ≤ n) ⇒ (φ ≤ ψ )[!j/!x , !m/!y, !i/!z, !n/!w]). (1)

In the quasi-inequality above, symbols such as j ≤ α denote the conjunction of inequalities of the

form jk ≤ αk for each jk in j and αk in α . Before passing each initial quasi-inequality separately
to stage 2 (described below), by exhaustively applying splitting rules to the top-most nodes of the

formulas in α and β , we transform each quasi-inequality into one of similar shape as (1) and in

which each α in α and each β in β contains at most one critical occurrence. Hence, w.l.o.g. we can

assume that each α in α and β in β contains exactly one ε-critical occurrence (since in case any of
them does not, the corresponding inequality will be ε∂-uniform, and hence it can be assimilated to

the inequalities i ≤ γ or δ ≤ n). Hence, we can represent the resulting quasi-inequality as follows:

∀j∀m∀i∀n((j ≤ αp & j ≤ αq & βp ≤ m & βq ≤ m & i ≤ γ & δ ≤ n)

⇒ (φ ≤ ψ )[!j/!x , !m/!y, !i/!z, !n/!w]),
(2)

where p (respectively, q) is the vector of the atomic propositions in φ ≤ ψ such that ε(p) = 1

(respectively, ε(q) = ∂), and the subscript in each PIA-formula in α and β indicates the unique
ε-critical propositional variable occurrence contained in that formula.

2.8 Stage 2: Reduction and Elimination

The aim of this stage is to eliminate all occurring propositional variables from a given initial quasi-
inequality (1). This is done by means of the splitting rules, introduced above, as well as the fol-
lowing residuation rules and Ackermann-rules. The rules applied in this subsection are collectively
called reduction rules. The terms and inequalities in this subsection are from L+LE.

Residuation Rules. These rules operate on the inequalities in S , by rewriting a chosen inequality
in S into another inequality. For every f ∈ F and д ∈ G, and any 1 ≤ i ≤ nf and 1 ≤ j ≤ nд ,

f (φ1, . . . ,φi , . . . ,φnf
) ≤ ψ

φi ≤ f �i (φ1, . . . ,ψ , . . . ,φnf
)
εf (i) = 1

f (φ1, . . . ,φi , . . . ,φnf
) ≤ ψ

f �i (φ1, . . . ,ψ , . . . ,φnf
) ≤ φi

εf (i) = ∂

ψ ≤ д(φ1, . . . ,φi , . . . ,φnд
)

д�i (φ1, . . . ,ψ , . . . ,φnд
) ≤ φi

εд(i) = 1
ψ ≤ д(φ1, . . . ,φi , . . . ,φnд

)

φi ≤ д�i (φ1, . . . ,ψ , . . . ,φnд
)
εд(i) = ∂

Right Ackermann-Rule.

({αi ≤ p | 1 ≤ i ≤ n} ∪ {βj (p) ≤ γj (p) | 1 ≤ j ≤ m}, Ineq)

({βj (
∨n

i=1 αi ) ≤ γj (
∨n

i=1 αi ) | 1 ≤ j ≤ m}, Ineq)
(RAR)

where:

• p does not occur in α1, . . . ,αn or in Ineq,
• β1(p), . . . , βm(p) are positive in p, and
• γ1(p), . . . ,γm(p) are negative in p.

Left Ackermann-Rule.

({p ≤ αi | 1 ≤ i ≤ n} ∪ {βj (p) ≤ γj (p) | 1 ≤ j ≤ m}, Ineq)

{βj (
∧n

i=1 αi ) ≤ γj (
∧n

i=1 αi ) | 1 ≤ j ≤ m}, Ineq)
(LAR)

where:

• p does not occur in α1, . . . ,αn or in Ineq,
• β1(p), . . . , βm(p) are negative in p, and
• γ1(p), . . . ,γm(p) are positive in p.
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By applying adjunction and residuation rules on all PIA-formulas α and β , the antecedent of (2)
can be equivalently written as follows (cf. Definition 2.21):

LA(αp )[j/u,p,q] ≤ p & RA(βp )[m/u,p,q] ≤ p & q ≤ LA(αq)[j/u,p,q]

& q ≤ RA(βq)[m/u,p,q]& i ≤ γ & δ ≤ n.
(3)

Notice that the “parametric”(i.e., non-critical) variables in p and q actually occurring in each for-
mula LA(αp )[j/u,p,q], RA(βp )[m/u,p,q], LA(αq)[j/u,p,q], and RA(βq)[m/u,p,q] are those that are
strictly <Ω-smaller than the (critical) variable indicated in the subscript of the given PIA-formula.
After applying adjunction and residuation as indicated above, the resulting quasi-inequality is in
Ackermann shape relative to the <Ω-minimal variables.

For every p ∈ p and q ∈ q , let us define the sets Mv(p) and Mv(q) by recursion on <Ω as follows:

• Mv(p) := {LA(αp )[jk/u,mv(p)/p,mv(q)/q],RA(βp )[mh/u,mv(p)/p,mv(q)/q] | 1 ≤ k ≤

ni1 , 1 ≤ h ≤ ni2 ,mv(p) ∈
∏

p Mv(p),mv(q) ∈
∏

q Mv(q)}

• Mv(q) := {LA(αq)[jh/u,mv(p)/p,mv(q)/q],RA(βq)[mk/u,mv(p)/p,mv(q)/q] | 1 ≤ h ≤

mj1 , 1 ≤ k ≤ mj2 ,mv(p) ∈
∏

p Mv(p),mv(q) ∈
∏

q Mv(q)}

where, ni1 (respectively, ni2 ) is the number of occurrences of p in αs (respectively, in βs) for every
p ∈ p, and mj1 (respectively, mj2 ) is the number of occurrences of q in αs (respectively, in βs)
for every q ∈ q. By induction on <Ω , we can apply the Ackermann rule exhaustively so as to
eliminate all variables p and q. Then, the antecedent of the resulting purified quasi-inequality has
the following form:

i ≤ γ

[∨
Mv(p)/p,

∧
Mv(q)/q

]
δ

[∨
Mv(p)/p,

∧
Mv(q)/q

]
≤ n. (4)

Up to now, we have only made use of the assumption that the initial inequality is inductive, and
not also analytic. The next step is not needed for the elimination of propositional variables, since
we have already reached a successful elimination. However, it will turn out to be useful when
discussing canonicity.

By assumption, ε(p) = 1 for every p in p and ε(q) = ∂ for every q in q; recalling that every +γ
(respectively, −δ ) agrees with ε∂ and that γ (respectively, δ ) is positive (respectively, negative) PIA

for every γ ∈ γ (respectively, δ ∈ δ ) (this is precisely what the analiticity assumption yields), the

following semantic equivalences hold for each γ in γ and δ in δ :

γ

[∨
Mv(p)/p,

∧
Mv(q)/q

]
=
∧{

γ
[
mv(p)/p, mv(q)/q

]
| mv(p) ∈

∏
p

Mv(p), mv(q) ∈
∏

q

Mv(q)

}
.

δ

[∨
Mv(p)/p,

∧
Mv(q)/q

]
=
∨{

δ
[
mv(p)/p, mv(q)/q

]
| mv(p) ∈

∏
p

Mv(p), mv(q) ∈
∏

q

Mv(q)

}
.

Hence, by applying splitting, for every γ in γ and δ in δ , the corresponding inequalities in (4) can
be equivalently replaced by (at most) Σn,m(nimj ) inequalities of the form

i ≤ γ
[
mv(p)/p,mv(q)/q

]
δ
[
mv(p)/p,mv(q)/q

]
≤ n, (5)

where γ
[
mv(p)/p,mv(q)/q

]
is strictly syntactically open and δ

[
mv(p)/p,mv(q)/q

]
is strictly syn-

tactically closed (cf. Definition 4.3 and Lemma 4.8).

ACM Transactions on Computational Logic, Vol. 22, No. 3, Article 18. Publication date: July 2021.



Slanted Canonicity of Analytic Inductive Inequalities 18:17

3 SLANTED LE-ALGEBRAS AND THEIR CANONICAL EXTENSIONS

3.1 Basic Definitions and Properties

Definition 3.1. Let A,B be lattices. For any nf ∈ N and any order-type εf on nf , a coordinate-

wise finitely join-preserving nf -ary map f : Bεf → Aδ is c-slanted if its range is included in K(Aδ ).
When B = A, the map f is a c-slanted operation on A. For any nд ∈ N and any order-type εд on

nд , a coordinate-wise finitely meet-preserving nд-ary map д : Bεд → Aδ is o-slanted if its range is

included in O(Aδ ). When B = A, the map д is an o-slanted operation on A.

By definition, slanted maps are normal, in the sense of Definition 2.4, as maps Bε → Aδ . Ex-
amples of (properly) c-slanted (respectively, o-slanted) operations arise as the restrictions to the
original algebra of the left (respectively, right) adjoints and residuals of the π -extensions (respec-
tively, σ -extensions) of standard normal д-type (respectively, f -type) operations (cf. [12, Lemma
10.6]) when the signature (F ,G) is not closed under adjoints and residuals.

Definition 3.2. For any LE-signature (F ,G), a slanted (distributive) lattice expansion (abbreviated
as slanted (D)LE or s-(D)LE) is a tuple A = (A,F A,GA) such that A is a bounded (distributive)
lattice, F A = { f A | f ∈ F } and GA = {дA | д ∈ G}, such that every f A ∈ F A (respectively, дA ∈

GA) is an nf -ary (respectively, nд-ary) c-slanted (respectively, o-slanted) operation onA. A slanted

Boolean algebra expansion (abbreviated as slanted BAE or s-BAE) is a structure A = (A,F A,GA)
such that F A and GA are as above, and A is a Boolean algebra.

Slanted LEs generalise the standard notion of normal LE (cf. Definition 2.4), as follows: Via the
canonical embedding e : A → Aδ , and using compactness, it is not difficult to see that e[A] =
K(Aδ ) ∩ O(Aδ ) for any lattice A. Hence, any standard normal operation h on A gives rise to a
slanted operation e ·h onAwhich will be c-slanted ifh is coordinate-wise finitely join-preserving or
meet-reversing, and o-slanted if if h is coordinate-wise finitely meet-preserving or join-reversing.
Conversely, any slanted operation on A the range of which is included in K(Aδ ) ∩ O(Aδ ) = e[A]
gives rise to a normal operation on A in the standard sense. Hence, any standard LE A can be
“lifted”to a slanted LE A� in the same signature by pre-composing all operations of A with e , and
any slanted LE S based on A such that all its operations target K(Aδ ) ∩O(Aδ ) = e[A] gives rise to
a standard LE S� in the same signature, and moreover, (A�)� = A and (S�)

� = S.
In the remainder of the paper, we will abuse notation and write e.g. f for f A when this causes

no confusion. Slanted LEs constitute the main semantic environment of this article.

Example 3.3. Examples of slanted BAEs and LEs arise in connection with subordination alge-
bras [1], quasi-modal algebras [3] and generalized implication lattices [2]. The slanted algebras
arising from subordination and quasi-modal algebras will be described in detail in Section 6. Let
us consider here the case of generalized implications.

A generalized implication lattice [2] is a pair L = (L,⇒) such that L is a bounded distributive
lattice, and ⇒: L × L → I(L) (where I(L) denotes the set of the ideals of L) satisfies the following
conditions: for every a,b and c ∈ L,

(1) (a ⇒ b) ∩ (a ⇒ c) = a ⇒ (b ∧ c);
(2) (a ⇒ b) ∩ (b ⇒ c) = (a ∨ b) ⇒ c;
(3) (a ⇒ b) ∩ (b ⇒ c) ⊆ a ⇒ c;
(4) a ⇒ a = L.

For every generalized implication lattice L, let L∗ := (L,д⇒) be its associated slanted algebra,
where д⇒ : L × L → Lδ is defined by the assignment (a,b) �→

∨
{c ∈ L | c ∈ a ⇒ b}. It can be

readily verified thatд⇒ is a binary o-slanted operator of order-type (∂, 1) satisfying the inequalities
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1 ≤ д⇒(a,a) and д⇒(a,b) ∧ д⇒(b, c) ≤ д⇒(a, c) for every a,b, c ∈ L which are analytic Sahlqvist
and analytic inductive respectively. Conversely, if A = (L,д) is an s-DLE s.t. F = � and G := {д}
with nд = 2 and εд = (∂, 1) satisfying the properties verified by д⇒, then A∗ := (L,⇒д), where
⇒д : L × L → I(L) is defined by the assignment (a,b) �→ {c ∈ L | c ≤ д(a,b)}, is a generalized
implication lattice. It is routine to show that (L∗)∗ = L for every generalized implication lattice L,
and (A∗)

∗ = A for every s-DLE as above.

As is done in [23, Section 2.3] and [34, Section 5], the σ - and π -extensions of slanted n-ary
operations of a given bounded latticeA are defined not as maps (An)δ → (Aδ )δ as in the standard
definition (cf. [22, Definition 4.1]), but as maps (An)δ → Aδ . Towards the formal definition, recall
(cf. Section 2.2) that in order to extend operations of any arity which are monotone or antitone
in each coordinate from a lattice A to its canonical extension, treating the case of monotone and
unary operations suffices:

Definition 3.4. Let A,B be bounded lattices. For every unary, c-slanted map f : B → Aδ , the
σ -extension of f is the map f σ : Bδ → Aδ defined first by declaring, for every k ∈ K(Bδ ),

f σ (k) :=
∧

{ f (a) | a ∈ B and k ≤ a},

and then, for every u ∈ Bδ ,

f σ (u) :=
∨

{ f σ (k) | k ∈ K(Bδ ) and k ≤ u}.

For every unary, o-slanted map д : B → Aδ , the π -extension of д is the map дπ : Bδ → Aδ defined
first by declaring, for every o ∈ O(Bδ ),

дπ (o) :=
∨

{д(a) | a ∈ B and a ≤ o},

and then, for every u ∈ Bδ ,

дπ (u) :=
∧

{дπ (o) | o ∈ O(Bδ ) and u ≤ o}.

It immediately follows by denseness and the definition above that, if e : A → Aδ is the
canonical embedding, then eσ = eπ = idAδ . Likewise, it can be readily verified that, for every
(standard) map h : B → A which is coordinatewise finitely join-preserving or meet-reversing
(respectively, coordinate-wise finitely meet-preserving or join-reversing), (e · h)σ = hσ (respec-
tively, (e · h)π = hπ ). Conversely, as discussed above, any c-slanted (respectively, o-slanted) map
h : B → Aδ the range of which is included in K(Aδ ) ∩ O(Aδ ) = e[A] gives rise to a normal map
h� : B → A to which the standard definitions of σ - and π -extensions apply, and it can be readily
verified that hσ = (h�)

σ (respectively, hπ = (h�)
π ).

Let us spell out and further simplify the definition above when B := Aε for any order-type ε on

n ≥ 1. First, recall that taking the order-dual interchanges closed and open elements: K((Aδ )
∂
) =

O(Aδ ) and O((Aδ )
∂
) = K(Aδ ); similarly, K((An)δ ) = K(Aδ )n , and O((An)δ ) = O(Aδ )n . Hence,

K((Aδ )
ε
) =

∏
i K(A

δ )ε (i) and O((Aδ )
ε
) =

∏
i O(A

δ )ε (i) for every LE A and every ε , where

K(Aδ )ε (i) :=

{
K(Aδ ) if ε(i) = 1

O(Aδ ) if ε(i) = ∂
O(Aδ )ε (i) :=

{
O(Aδ ) if ε(i) = 1

K(Aδ ) if ε(i) = ∂.

Letting ≤ε denote the product order on (Aδ )ε , we have for every f ∈ F , д ∈ G, k ∈ K((Aδ )
εf
),

o ∈ O((Aδ )
εf
), u ∈ (Aδ )nf , and v ∈ (Aδ )nд ,

f σ (k) :=
∧
{ f (a) | a ∈ Aεf and k ≤εf a} f σ (u) :=

∨
{ f σ (k) | k ∈ K((Aδ )

εf
) and k ≤εf u}

дπ (o) :=
∨
{д(a) | a ∈ Aεд and a ≤εд o} дπ (v) :=

∧
{дπ (o) | o ∈ O((Aδ )

εд
) and v ≤εд o}.
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Lemma 3.5. For every lattice A, any c-slanted operation f on A of arity nf and order-type εf , and
any o-slanted operation д on A of arity nд and order-type εд ,

(1) f σ is εf -monotone and дπ is εд-monotone;
(2) f σ is completely join-preserving in all coordinates i such that εf (i) = 1 and completely meet-

reversing in all coordinates i such that εf (i) = ∂;
(3) дπ is completely meet-preserving in all coordinates i such that εд(i) = 1 and completely join-

reversing in all coordinates i such that εд(i) = ∂.

Proof. As to item 1, let u,v ∈ (Aδ )εf . If u ≤ v , then by denseness, for every k ∈ K((Aδ )εf )),
if k ≤ u then k ≤ v . Hence f σ (u) :=

∨
{ f σ (k) | k ∈ K((Aδ )εf ) and k ≤ u} ≤

∨
{ f σ (k) | k ∈

K((Aδ )εf ) and k ≤ v} := f σ (v). The proof of the εд-monotonicity of дπ is dual.
The arguments for proving the remaining items in the standard setting (cf. [22, Lemma 4.6])

can be straightforwardly generalized to the present setting. However, we are going to adopt a
simpler method, which is constructive and for which we do not need to appeal to the restricted
distributive law. Namely, sinceAδ is a complete lattice, it is enough to show that the right residuals
(resp. Galois residuals) of f σ exist in each coordinate. For the sake of keeping the notation simple,
let us show that if f is binary and of order-type εf = ε = (1, ∂), the right residual of f in the first

coordinate (which needs to be of order-type (1, 1)) exists. Let д1 : Aδ × Aδ → Aδ be defined as
follows: д1(o,o

′) :=
∨
{a ∈ A | f σ (a,o′) ≤ o} for all o,o′ ∈ O(Aδ ) and д1(v1,v2) :=

∧
{д(o1,o2) |

oi ∈ O(Aδ ) and vi ≤ oi } for all v1,v2 ∈ Aδ .8 Let us show that, for every k ∈ K(Aδ ) and all
o,o′ ∈ O(Aδ ),

f σ (k,o′) ≤ o iff k ≤ д1(o,o
′). (6)

From left to right, if
∧
{ f (a,b) | a,b ∈ A and k ≤ a and b ≤ o′} =: f σ (k,o′) ≤ o, then by

compactness (recall that f (a,b) ∈ K(Aδ )) this implies that f (a1,b1) ∧ · · · ∧ f (an ,bn) ≤ o for some
a1, . . . ,an ∈ A and b1, . . . ,bn ∈ A such that k ≤ ai and bi ≤ o′ for every 1 ≤ i ≤ n. Since f is
ε-monotone, letting b := b1 ∨ · · · ∨ bn and a := a1 ∧ · · · ∧ an , this implies that k ≤ a, b ≤ o′ and
f (a,b) ≤ f (a1,b1) ∧ · · · ∧ f (an ,bn) ≤ o. Hence, f σ (a,o′) :=

∧
{ f (a,b) | b ∈ A and b ≤ o′} ≤

f (a,b) ≤ o, and hence k ≤ a ≤
∨
{a ∈ A | f σ (a,o′) ≤ o} =: д1(o,o

′), as required.
For the converse direction, if k ≤ д1(o,o

′) :=
∨
{a ∈ A | f σ (a,o′) ≤ o}, then, by compactness,

k1 ≤ a1∨· · ·∨an for some a1, . . . ,an ∈ A such that
∧
{ f (ai ,b) | b ∈ A and b ≤ o′} =: f σ (ai ,o

′) ≤ o
for every 1 ≤ i ≤ n. Hence, by compactness, for every 1 ≤ i ≤ n, there exist some b1

i , . . . ,b
ni

i ∈ A

such that b j
i ≤ o′ for every 1 ≤ j ≤ ni and

f (ai ,b
1
i ) ∧ · · · ∧ f (ai ,b

ni

i ) ≤ o.

For each 1 ≤ i ≤ n, let bi := b1
i ∨ · · · ∨ bni

i . Hence, bi ≤ o′ and, by the antitonicity of f in its

second coordinate, f (ai ,bi ) ≤ f (ai ,b
1
i ) ∧ · · · ∧ f (ai ,b

ni

i ) ≤ o for every 1 ≤ i ≤ n. Hence, letting
b := b1 ∨ · · · ∨ bn , and a := a1 ∨ · · · ∨ an , we have b ≤ o′ and k ≤ a, and moreover,

8If f : Aεf → Aδ , then, for every 1 ≤ i ≤ nf such that εf (i) = 1, we let дi : (Aδ )εдi → Aδ be defined as follows:

дi (o) :=
∨
{a ∈ A | f σ (o[a/oi ]) ≤ oi } for every o ∈ O (Aδ )εдi and дi (v) :=

∧
{дi (o) | o ∈ O (Aδ )

εдi and v ≤εдi o }

for any v ∈ Aδ , where εдi (i) = 1 and εдi (j) = ε∂
f
(j) if j � i . For every 1 ≤ i ≤ nf such that εf (i) = ∂, we let

дi : (Aδ )εдi → Aδ be defined as follows: дi (k) :=
∧
{a ∈ A | f σ (k[a/oi ]) ≤ oi } for every k ∈ K (Aδ )εдi and

дi (v) :=
∨
{дi (k) | k ∈ K (Aδ )

εдi and k ≤εдi v } for any v ∈ Aδ , where εдi (j) = εf (j) for every 1 ≤ j ≤ nf .
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f σ (k,o′)
:=

∧
{ f (a,b) | a,b ∈ A and k ≤ a and b ≤ o′}

≤ f (a,b)
= f (a1 ∨ · · · ∨ an ,b) a := a1 ∨ · · · ∨ an

= f (a1,b) ∨ · · · ∨ f (an ,b) f finitely join preserving in its first coord.
≤ f (a1,b1) ∨ · · · ∨ f (an ,bn) b := b1 ∨ · · · ∨ bn and εf (2) = ∂
≤ o f (ai ,bi ) ≤ o for every 1 ≤ i ≤ n

as required. Let us show that, for all u,u ′,v ∈ Aδ ,

f σ (u,u ′) ≤ v iff u ≤ д1(v,u
′).

Let u,u ′,v ∈ Aδ . From left to right, if f σ (u,u ′) ≤ v , to show that u1 ≤ д(v,u ′) :=
∧
{д(o,o′) |

o,o′ ∈ O(Aδ ) and v ≤ o and u ′ ≤ o′}, it is enough to show that k ≤ д(o,o′) for all k ∈ K(Aδ ) such
that k ≤ u and for all o,o′ ∈ O(Aδ ) such that v ≤ o and u ′ ≤ o′. Since f σ is ε-monotone, for any
such k,o and o′, we have f σ (k,o′) ≤ f σ (u,u ′) ≤ v ≤ o. By (6), this implies that k ≤ д1(o,o

′) as
required. From right to left, if u ≤ д1(v,u

′) :=
∧
{д(o,u ′) | o,o′ ∈ O(Aδ ) and v ≤ o and u ′ ≤ o′},

to show that f σ (u,u ′) ≤ v , we need to show that f σ (k,o′) ≤ o for every k ∈ K(Aδ ) s.t. k ≤ u and
every o,o′ ∈ O(Aδ ) s.t. v ≤ o and u ′ ≤ o′. By assumption, k ≤ u ≤ д(v,u ′) ≤ д(o,o′) which, by (6),
implies f σ (k,o′) ≤ o, as required. �

As in the standard case (cf. discussion before Definition 2.8), we define the canonical extension
of a slanted LLE-algebra so as to meet the desideratum that it be a perfect (resp. complete, in the
constructive setting) standard LLE-algebra. In light of the lemma above, we are again justified in
choosing the σ -extensions of connectives in F and the π -extensions of connectives in G, which
motivates the following:

Definition 3.6. The canonical extension of a slanted LLE-algebra A = (A,F A,GA) is the LLE-

algebra Aδ := (Aδ ,F A
δ
,GA

δ
) such that, for all f ∈ F and д ∈ G, the operations f A

δ
and дA

δ
are

defined as the σ -extension of f A and as the π -extension of дA , respectively, as in Definition 3.4.

It immediately follows from the definition above and Lemma 3.5 that the canonical extension
of a slanted LE A is a perfect LE (cf. Definition 2.9) (respectively, complete LE, in the constructive
setting) in the standard sense.

Also, from the discussions after Definitions 3.2 and 3.4, it readily follows that (A�)δ = Aδ for
every standard LE A, and that (S�)

δ = Sδ for every slanted LE S based on a bounded lattice A and
such that all its operations target K(Aδ ) ∩O(Aδ ) = e[A].

3.2 Slanted LE-Algebras as Models of LE-Inequalities

Fix an arbitrary LE-signature (F ,G). From the discussion of the previous section, it is clear that,
for any slanted LLE-algebra A, any assignment into A, i.e., any map v : PROP → A, uniquely
extends to an LLE-homomorphism v : Fm → Aδ (abusing notation, the same symbol for the
given assignment also denotes its homomorphic extension). Hence,

Definition 3.7. An LLE-inequality φ ≤ ψ is satisfied in a slanted LLE-algebra A under the assign-
ment v (notation: (A,v) |= φ ≤ ψ ) if (Aδ , e · v) |= φ ≤ ψ in the usual sense, where e · v is the
assignment onAδ obtained by composing the canonical embedding e : A→ Aδ to the assignment
v : PROP → A.

Moreover, φ ≤ ψ is valid in A (notation: A |= φ ≤ ψ ) if (Aδ , e · v) |= φ ≤ ψ for every assign-
ment v into A (notation: Aδ |=A φ ≤ ψ ). We will often refer to assignments into A as admissible
assignments.
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From the definition above, and the discussion after Definition 3.6, it immediately follows that
any LE-inequality φ ≤ ψ is valid in A iff φ ≤ ψ is valid in A� for every standard LE A, and that
φ ≤ ψ is valid in S iff φ ≤ ψ is valid in S� for every slanted LE S based on a bounded lattice A and
such that all its operations target K(Aδ ) ∩O(Aδ ) = e[A]. This shows that the notion of validity on
slanted algebras generalizes standard validity in the appropriate way.

Notice that, whether constructive or non-constructive, the canonical extension of any slanted
LLE-algebra A is an L+LE-algebra in the standard sense. Hence, given the definition above, any
slanted LLE-algebra is also a slanted L+LE-algebra, in the sense that the definition above makes the

machinery of Aδ available for the interpretation of the language L+LE on A in the sense specified
in the definition above.

Recall that by definition, f A
δ
= (f A)σ for each f ∈ F , and дA

δ
= (дA)π for each д ∈ G. We

are now in a position to define the notion of slanted canonicity (abbreviated as s-canonicity) for
LLE-sequents/inequalities:

Definition 3.8 (Slanted Canonicity of LLE-inequalities). An LLE-inequality φ ≤ ψ is s-canonical
if for every slanted LLE-algebra A,

Aδ |=A φ ≤ ψ implies Aδ |= φ ≤ ψ .

From the definition above, and the discussion after Definition 3.7, it immediately follows that
standard canonicity translates into a relativized notion of slanted canonicity: namely, slanted
canonicity relative to the slanted algebras in the range of the constructor (−)�. Conversely, slanted
canonicity relativized to the domain of definition of the constructor (−)� corresponds to the notion
of standard canonicity.

4 SLANTED CANONICITY OF ANALYTIC INDUCTIVE LE-INEQUALITIES

This section is aimed at showing that every analytic inductive formula is s-canonical (in the sense
of Definition 3.8). We first give the statement of the canonicity theorem and its proof, and subse-
quently prove the proposition needed in the previously stated proof and its requisite preliminaries.

Theorem 4.1. For any language LLE, all analytic inductive LLE-inequalities are s-canonical.

Proof. Let φ ≤ ψ be an analytic inductive LLE-inequality, fix a slanted LLE-algebra A, and
let Aδ be its canonical extension. As discussed in Section 2.6, ALBA succeeds in reducing φ ≤ ψ
to a set ALBA(φ ≤ ψ ) of pure quasi-inequalities in the expanded language L+LE. The required
canonicity proof is summarised in the following U-shaped diagram:

A |= φ ≤ ψ Aδ |= φ ≤ ψ
�

Aδ |=A φ ≤ ψ �

�

Aδ |=A ALBA(φ ≤ ψ ) ⇔ Aδ |= ALBA(φ ≤ ψ )

The upper bi-implication on the left is due to the definition of validity on slanted LEs (cf.
Definition 3.7). The lower bi-implication on the left is given by Proposition 4.9 below. The hor-
izontal bi-implication follows from the facts that, by assumption, ALBA(φ ≤ ψ ) is pure, and that,
when restricted to pure formulas, the ranges of admissible and arbitrary assignments coincide. The
bi-implication on the right is due to [12, Theorem 6.1] (which can be applied since the canonical
extension of a slanted LE is a standard LE). �

Towards the proof of Proposition 4.9, the following definitions and lemmas will be useful:
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Definition 4.2. The sets SC and SO of syntactically closed and syntactically open L+LE-terms are
defined simultaneously as follows: for every f ∗ ∈ F ∗, f ∈ F , д∗ ∈ G∗, and д ∈ G,

SC � φ :: = p | j | � | ⊥ | φ ∨ φ | φ ∧ φ | f ∗(φ,ψ ) | д(φ,ψ )

SO � ψ :: = p | m | � | ⊥ | ψ ∨ψ | ψ ∧ψ | д∗(ψ ,φ) | f (ψ ,φ).

Recall that, when writing h(χ , ξ ), we let χ represent all the coordinates of h such that εh(i) = 1

and ξ represent all the coordinates of h such that εh(i) = ∂.

The previous definition identifies the syntactic shape of the terms, the (formal) topological9 prop-
erties of which guarantee the soundness of the Ackermann rules under admissible assignments in
the setting of standard (i.e., non-slanted) LEs. The following definition identifies a more restricted
syntactic shape of LE-terms which aims at guaranteeing the soundness of the Ackermann rules
under admissible assignments in the setting of slanted LEs; this restriction consists in imposing
the same constraints both to the connectives of the original language and to those of the expanded
language.

Definition 4.3. The sets SSC and SSO of strictly syntactically closed (ssc) and strictly syntactically
open (sso) L+LE-terms are defined simultaneously as follows: for every f ∗ ∈ F ∗, and д∗ ∈ G∗,

SSC � φ :: = p | j | � | ⊥ | φ ∨ φ | φ ∧ φ | f ∗(φ,ψ ),

SSO � ψ :: = p | m | � | ⊥ | ψ ∨ψ | ψ ∧ψ | д∗(ψ ,φ).

From the definition above, it immediately follows that

Lemma 4.4. For all ssc formulas φ(!x , !y) and all sso formulasψ (!x , !y) which are positive in any x

in !x and negative in anyy in !y, and all tuplesφ ′ andψ ′ of ssc formulas and sso formulas, respectively,

(1) φ[φ ′/!x ,ψ ′/!y] is ssc;

(2) ψ [ψ ′/!x ,φ ′/!y] is sso.

Lemma 4.5. If α(!x) is a definite positive PIA LLE-formula and β(!x) is a definite negative PIA
LLE-formula, then

(1) α is sso and β is ssc.
(2) If +x ≺ +α and +x ≺ +β , then LA(α)[j/!u] is ssc and RA(β)[m/!u] is sso.
(3) If −x ≺ +α and −x ≺ +β , then LA(α)[j/!u] is sso and RA(β)[m/!u] is ssc.
Proof.
(1) Straightforward by simultaneous induction on α and β .
(2) and (3) We proceed by simultaneous induction on α and β .
If α = β = x , then the assumptions of item (2) are satisfied; then LA(α)[j/!u] = j/u is clearly ssc

and RA(β)[m/!u] = m/u is clearly sso.

As to the inductive step, if α = д(φ,ψ ), with each φ in φ positive PIA (hence, by item (1), sso)

and eachψ inψ negative PIA (hence, by item (1), ssc), and the only occurrence of x is in φh , then

φh is positive PIA, and moreover, д�
h
∈ F ∗ is positive in its hth coordinate and has the opposite

polarity of εд in all the other coordinates. Hence, д�
h
(φ−h , j/!u,ψ ) is ssc. Two cases can occur: (a)

If +x ≺ +α , then +x ≺ +φh ; hence, by induction hypothesis, LA(φh)[i/!u ′] is ssc, and moreover,
+u ′ ≺ LA(φh)(u

′) (cf. Lemma 2.22). Hence,

LA(α)[j/!u] = LA(φh)[д
�
h
(φ−h , j/!u,ψ )/!u ′]

9This denomination stems from the original definition of canonical extensions as algebraic structures encoding information

about Stone duals of Boolean algebras [32].
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is ssc (cf. Lemma 4.4). (b) If −x ≺ +α , then −x ≺ +φh , hence by induction hypothesis, LA(φh)[i/!u ′]

is sso, and moreover, −u ′ ≺ LA(φh)(u
′) (cf. Lemma 2.22). Hence,

LA(α)[j/!u] = LA(φh)[д
�
h
(φ−h , j/!u,ψ )/!u ′]

is sso (cf. Lemma 4.4). The remaining cases are α = д(φ,ψ ) such that the only occurrence of x is

inψh , β = f (φ,ψ ) with x occurring in φh orψh , and are shown in a similar way. �

In the following two lemmas, α , β1, . . . , βn and γ1, . . . ,γn are L+LE-terms. We work under the
assumption that the values of all parameters occurring in them (propositional variables, nominals
and conominals) are given by some fixed admissible assignment. Recall that every slanted LLE-
algebra is also an slanted L+LE-algebra (cf. discussion after Definition 3.7).

Lemma 4.6 (RightHanded Ackermann Lemma for Admissible Assignments). Let α be ssc,
p � PROP(α), let β1(p), . . . , βn(p) be ssc and positive in p, and let γ1(p), . . . ,γn(p) be sso and negative
in p. Then, for every slanted LLE-algebra A and every admissible assignment v into A,

(A,v) |= βi (α/p) ≤ γi (α/p) for all 1 ≤ i ≤ n

iff there exists some p-variant v ′ of v into A such that

(A,v ′) |= α ≤ p and (A,v ′) |= βi (p) ≤ γi (p) for all 1 ≤ i ≤ n.

Lemma 4.7 (LeftHanded Ackermann Lemma for Admissible Assignments). Let α be sso, p �
PROP(α), let β1(p), . . . , βn(p) be ssc and negative in p, and let γ1(p), . . . ,γn(p) be sso and positive in
p. Then, for every slanted LLE-algebra A and every admissible assignment v into A,

(A,v) |= βi (α/p) ≤ γi (α/p) for all 1 ≤ i ≤ n

iff there exists some admissible p-variant v ′ of v into A such that

(A,v ′) |= p ≤ α and (A,v ′) |= βi (p) ≤ γi (p) for all 1 ≤ i ≤ n.

The two lemmas above are proved in Section A.2.

Lemma 4.8. Executing ALBA on an analytic inductive LLE-inequality (φ ≤

ψ )[α/!x , β/!y,γ/!z,δ/!w], as indicated in Section 2.6, we obtain quasi-inequalities each of
which is such that each inequality in its antecedent, which as discussed at the end of Section 2.8, is of
either of the following forms:

i ≤ γ
(
mv(p)/p,mv(q)/q

)
δ
(
mv(p)/p,mv(q)/q

)
≤ n, (7)

is such that its left-hand side is ssc and its right-hand side is sso.

Proof. Clearly, i is ssc and n is sso. Let us show that the formula γ
(
mv(p)/p,mv(q)/q

)
is sso

while δ
(
mv(p)/p,mv(q)/q

)
is ssc. Recall from Notation 2.17 that γ (p,q) (respectively, δ (p,q)) is

a positive (respectively, negative) PIA term, and both γ and δ are ε∂-uniform as subterms of the
original analytic inductive inequality. Recall that ε(p) = 1 for every variable p in p and ε(q) =
∂ for each q in q. Hence, −p ≺ +γ and +q ≺ +γ , and −p ≺ −δ and +q ≺ −δ for each p in
p and each q in q. Lemma 4.5 implies that γ (p,q) is sso and δ (p,q)) is ssc. Hence, the proof is
complete if we show that mv(p) is ssc for every variable p such that ε(p) = 1 and mv(q) is sso for
every variable q such that ε(q) = ∂. Recall (cf. Subsection 2.6) that for every p in p, the formula

mv(p) is either of the form LA(αp )[jk/u,mv(p)/p,mv(q)/q] for some definite positive PIA formula

αp (and hence +p ≺ +αp ), or is of the form RA(βp )[mh/u,mv(p)/p,mv(q)/q] for some definite
negative PIA formula βp (and hence +p ≺ −βp ). Likewise, for every q in q, the formula mv(q) is
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either of the form LA(αq)[jk/u,mv(p)/p,mv(q)/q] for some definite positive PIA formula αq (and

hence −q ≺ +αq ), or is of the form RA(βq)[mh/u,mv(p)/p,mv(q)/q] for some definite negative
PIA formula βq (and hence −q ≺ −βq ). The proof proceeds by induction on <Ω . If p is <Ω-minimal,
then the form of mv(p) simplifies to either LA(αp )[jk/u] for some positive PIA formula αp such
that +p ≺ +αp , or to RA(βp )[mh/u] for some negative PIA formula βp such that +p ≺ −βp . In
either case, items (2) and (3) of Lemma 4.5 guarantee that mv(p) is ssc. Similarly, items (2) and (3)
of Lemma 4.5 guarantee that mv(q) is sso when q is <Ω-minimal. The inductive step follows from
items (2) and (3) of Lemma 4.5, the inductive hypothesis, and the polarities of the coordinates of the
formulas LA(αp ), LA(αq), RA(βp ), and RA(βq) (cf. Lemma 2.22); as an example, consider the case in

which mv(q) is of the form LA(αq)[jk/u,mv(p)/p,mv(q)/q] for some positive PIA formula αq (and
hence −q ≺ +αq ). Then by Lemma 4.5.3, the formula LA(αq)[jk/!u,p,q], which, by Lemma 2.22
is antitone in u and p and monotone in q, is sso; hence, by induction hypothesis and Lemma 4.4,

mv(q) := LA(αq)[jk/!u,mv(p)/p,mv(q)/q] is sso. �

Proposition 4.9 (Correctness of Executions of ALBA on Analytic Inductive Ineqali-
ties under Admissible Assignments into Slanted Algebras). For any analytic inductive LLE-
inequality φ ≤ ψ , if ALBA(φ ≤ ψ ) denotes the set of pure L+LE-quasi-inequalities generated by the
ALBA-runs discussed in Section 2.6, then for every slanted LLE-algebra A,

Aδ |=A φ ≤ ψ iff Aδ |=A ALBA(φ ≤ ψ ).

Proof. The proof is similar to the correctness proof of ALBA runs under arbitrary assignments
in the standard setting (see, e.g., [11, Correctness Theorem] and [12, Correctness Theorem]). The
only significant difference is that the Ackermann rules are generally not invertible under admis-
sible assignments, not even on standard algebras (cf. [11, Example 9.1]), which, as discussed after
Definition 3.2, correspond to a proper subclass of slanted algebras. However, by Lemmas 4.7 and 4.6,
when the left-hand and right-hand sides of all non-pure inequalities involved in the application of
an Ackermann rule are, respectively, ssc and sso, the rule is sound and invertible under admissible
assignments. By Lemma 4.8, this requirement on the syntactic shape is always satisfied when the
rule is applied in the ALBA-runs discussed in Section 2.6. �

5 TRANSFER OF CANONICITY FOR DLE-INEQUALITIES

In [16], Gödel-McKinsey-Tarski type translations (GMT-type translations) are used to obtain
Sahlqvist correspondence and canonicity as transfer results in a number of settings. Specifically,
GMT-type translations τε are defined parametrically in each order-type on a set PROP of propo-
sitional variables so as to preserve the syntactic shape of (Ω, ε)-inductive inequalities in passing
from arbitrary DLE-languages to corresponding target Boolean algebra expansion languages (BAE-
languages) enriched with additional S4-modalities �≥ and �≤ . While correspondence via transla-
tion is obtained in full generality for inductive inequalities in arbitrary DLE-languages (cf. [16,
Theorem 6.1]), the canonicity via translation of inductive inequalities is obtained in [16] only in
the restricted setting of normal modal expansions of bi-Heyting algebras (bHAEs) (cf. [16, Theo-
rem 7.1]). The argument can be summarized by means of the following diagram: for every bHAE
A and every (Ω, ε)-inductive inequality φ ≤ ψ of compatible signature, a BAE B exists such that
the vertical bi-implications hold. Hence, the canonicity of φ ≤ ψ follows from the fact that the
BAE-inequality τε (φ) ≤ τε (ψ ) is an (Ω, ε)-inductive inequality, and that every such inequality has
been shown to be canonical within generalized Sahlqvist theory in the framework of classical
(i.e., Boolean) modal logic (cf. [10]).
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A |= φ ≤ ψ Aδ |= φ ≤ ψ
� �

B |= τε (φ) ≤ τε (ψ ) ⇔ Bδ |= τε (φ) ≤ τε (ψ )

As explained in [16, Section 7.2], this argument could not be carried beyond the setting of bHAEs
only because, although τε (φ) ≤ τε (ψ ) has the appropriate (inductive) syntactic shape, if A is not
a bHAE, the algebraic interpretation of the S4-modalities �≥ and �≤ in B turns out to be slanted
(according to the terminology introduced in this article), and the then state-of-the-art theory of
canonicity would not account for inequalities between terms built out of slanted connectives. How-
ever, we are now in a position to apply Theorem 4.1 to justify the horizontal bi-implication of
the diagram above, and hence to obtain the canonicity of a restricted class of analytic inductive
inequalities in arbitrary DLE-signatures as a transfer result of the slanted canonicity of analytic in-
ductive BAE-inequalities. In what follows, we recall the definition of τε , and then define the class
of analytic inductive DLE-inequalities φ ≤ ψ such that τε (φ) ≤ τε (ψ ) is analytic inductive.

Parametrized Translation. Recall from [16, Section 5.2.1] that, for any normal DLE-signature
LDLE = LDLE(F ,G), the signature of the target language of the parametric GMT-type translations
τε is the normal BAE-signature L◦

BAE = LBAE(F
◦,G◦) where F ◦ := {�≥} ∪ { f ◦ | f ∈ F }, and

G◦ := {�≤} ∪ {д◦ | д ∈ G}, and for every f ∈ F (respectively, д ∈ G), the connective f ◦

(respectively, д◦) is such that nf ◦ = nf (respectively, nд◦ = nд) and εf ◦ (i) = 1 for each 1 ≤ i ≤ nf

(respectively, εд◦ (i) = 1 for each 1 ≤ i ≤ nд).
The target language for the parametrized GMT translations over Prop is given by

L◦
BAE � α ::= p | ⊥ | α ∨ α | α ∧ α | ¬α | f ◦(α) | д◦(α) | �≥α | �≤α .

For any order-type ε on PROP, the translation τε : LDLE → L◦
BAE is defined by the following

recursion:

τε (p) =

{
�≤p if ε(p) = 1

�≥p if ε(p) = ∂,

τε (⊥) = ⊥

τε (�) = �

τε (φ ∧ψ ) = τε (φ) ∧ τε (ψ )
τε (φ ∨ψ ) = τε (φ) ∨ τε (ψ )

τε (f (φ)) = �≥ f
◦
(
τε (φ)

εf
)

τε (д(φ)) = �≤д◦
(
τε (φ)

εд
)

where for each order-type η on n and any n-tuple ψ of L◦
BAE-formulas, ψ

η
denotes the n-tuple

(ψ ′
i )

n
i=1, whereψ ′

i = ψi if η(i) = 1 andψ ′
i = ¬ψi if η(i) = ∂.

It is clear from its definition that τε is intended to preserve the (good or excellent) shape of
the ε-critical branches of (Ω, ε)-inductive inequalities; however, τε will systematically destroy the
good shape of non-critical branches (i.e., ε∂-critical branches) by inserting Skeleton nodes +�≥

and −�≤ in the scope of PIA nodes, whenever the given ε∂-critical variable originally occurs in
the scope of a PIA-connective. This motivates the following

Definition 5.1. For every order-type ε on PROP, an (Ω, ε)-analytic inductive inequality (φ ≤

ψ )[α/!x , β/!y,γ/!z,δ/!w] (cf. Notation 2.17) is τε -transferable if for every maximal positive (re-

spectively, negative) ε∂-uniform PIA-subformula γ in γ (respectively, δ in δ ), either γ = q (re-
spectively, δ = p) for some q ∈ PROP (respectively, p ∈ PROP) such that ε(q) = ∂ (respec-
tively, ε(p) = 1), or γ (respectively, δ ) does not contain atomic propositions at all.

Example 5.2. The inequality�(�p1 ∧ ��p2) ≤ �(�� ∨ p2) ∧ �(p1 ∨ ���) is τε -transferable an-
alytic ε-Sahlqvist for ε(p1,p2) = (1, 1). Its τε -translation is the following analytic ε-Sahlqvist
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inequality:

�≥�◦(�≤�◦�≤p1 ∧ �≤�◦�≤�◦�≤p2) ≤ �≤�◦(�≥�◦� ∨ �≤p2) ∧ �≤�◦(�≤p1 ∨ �≥�◦�≥�◦�).

From the definition above, it immediately follows that

Proposition 5.3. For every τε -transferable (Ω, ε)-analytic inductive LDLE-inequality φ ≤ ψ , the
LBAE-inequality τε (φ) ≤ τε (ψ ) is analytic inductive, and hence s-canonical (cf. Theorem 4.1).

Hence, we can extend [16, Theorem 7.1] as follows:

Theorem 5.4 (Canonicity via Translation). For any order-type ε and any strict order Ω on
PROP, the slanted canonicity theorem of analytic (Ω, ε)-inductive L◦

BAE-inequalities transfers to the
standard canonicity of τε -transferable analytic (Ω, ε)-inductive LDLE-inequalities.

6 CANONICITY IN THE SETTING OF SUBORDINATION ALGEBRAS

In [17], the canonicity of a subclass of Sahlqvist formulas (the so-called s-Sahlqvist formulas,
cf. Definition 6.14) in the signature of tense modal logic is shown w.r.t. the semantics of subor-
dination algebras and their canonical extensions. In this section, we obtain a strengthening of this
result as a consequence of Theorem 4.1, via the following steps: (a) Equivalently presenting sub-
ordination algebras as a class of slanted BAEs (cf. Definitions 6.6 and 6.3, and Proposition 6.7); (b)
Verifying that satisfaction and validity of tense formulas/inequalities are preserved and reflected
across this equivalent presentation (cf. Proposition 6.11); (c) Verifying that the algebraic canonicity
of tense formulas in the setting of subordination algebras can be reduced to their slanted canonic-
ity (cf. Proposition 6.12); and (d) Recognizing s-Sahlqvist formulas as a proper subclass of analytic
inductive formulas of classical tense logic (cf. Proposition 6.15). Having understood the canonicity
of s-Sahlqvist formulas in the setting of subordination algebras as an instance of slanted canonicity
makes it possible to consider various extensions of this result which we discuss in the conclusions.

Definition 6.1 (Subordination Algebra). A subordination algebra is a pair S = (A,≺) where A
is a Boolean algebra and ≺ is a binary relation on A verifying the following conditions for all
a,b, c,d ∈ A:

S1. 0 ≺ 0 and 1 ≺ 1;
S2. a,b ≺ c implies a ∨ b ≺ c;
S3. a ≺ b, c implies a ≺ b ∧ c;
S4. a ≺ b ≤ c ≺ d implies a ≺ d .

Properties S1–S4 imply that ≺(a,−) := {b ∈ A | a ≺ b} is a filter of A and ≺(−,a) := {b ∈

A | b ≺ a} is an ideal of A for every a ∈ A. In what follows, we will sometimes use the notations
≺(S,−) :=

⋃
{≺(a,−) | a ∈ S} for any S ⊆ A, and ≺(x ,−) :=

⋃
{≺(a,−) | x ≤ a} for any

x ∈ J∞(Aδ ).

Definition 6.2. A subordination algebra S = (A,≺) is complete (respectively, perfect) if A is com-
plete (respectively, complete and atomic), and ≺ satisfies the following infinitary versions of con-
ditions S2 and S3: for all a ∈ A and S ⊆ A,

S2∞. If s ≺ a for all s ∈ S , then
∨
S ≺ a;

S3∞. If a ≺ s for all s ∈ S , then a ≺
∧
S .

The (constructive) canonical extension of a subordination algebra S = (A,≺) (cf. [17, Definition
1.10]) is the structure Sδ := (Aδ ,≺δ ) such that Aδ is the canonical extension of A and ≺δ is the
binary relation defined as follows:
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(1) If k ∈ K(Aδ ) and o ∈ O(Aδ ), then k ≺δ o if k ≤ a ≺ b ≤ o for some a,b ∈ A;
(2) If u,v ∈ Aδ , then u ≺δ v if for all k ∈ K(Aδ ) and o ∈ O(Aδ ), v ≤ o and k ≤ u imply k ≺δ o.

The (constructive) canonical extension of a subordination algebra is a perfect (respectively, com-
plete) subordination algebra (cf. [17, Definitions 1.7 and 1.10]).

Recall that a tense BAE is a BAEA = (A,�,�) such that �a ≤ b iff a ≤ �b for every a,b ∈ A. For
any such tense BAE, we let � and � denote the modal operators dual to � and �, respectively. That
is, �a := ¬�¬a and �a := ¬�¬a for any a ∈ A. Perfect (respectively, complete) subordination
algebras can be associated with perfect (respectively, complete) tense BAEs as follows:

Definition 6.3. For every perfect (respectively, complete) subordination algebra S = (A,≺), its
associated perfect (resp. complete) tense BAE is S+ := (A,�+,�+) where �+ : A → A is defined
by the assignment u �→

∧
{v ∈ A | u ≺ v} and �+ : A → A is defined by the assignment

u �→
∨
{v ∈ A | v ≺ u}; for every perfect (respectively, complete) tense BAE A = (A,�,�), we let

A+ := (A,≺+), where u ≺+ v iff �u ≤ v , or equivalently, iff u ≤ �v for all u,v in A.

Definition 6.4. A tense slanted BAE is a slanted BAE S = (A,�,�) such that A is a Boolean
algebra, � : A → Aδ is a c-slanted finitely join-preserving map, � : A → Aδ is an o-slanted
finitely join-preserving map and moreover, for every a,b ∈ A,

�a ≤ b iff a ≤ �b .

For such an s-algebra, we let � : A → Aδ denote the o-slanted operator defined by the assignment

a �→ ¬Aδ
�¬Aa and � : A → Aδ denote the c-slanted operator defined by the assignment a �→

¬Aδ
�¬Aa. It is straightforward to show that �a ≤ b iff a ≤ �b for every a,b ∈ A.

Lemma 6.5. If S = (A,�,�) is a tense slanted BAE, then its canonical extension Sδ = (Aδ ,�δ ,�δ )

is a perfect tense BAE.

Proof. Let k ∈ K(Aδ ) and o ∈ O(Aδ ) such that �σk ≤ o, that is
∧
{�a | k ≤ a ∈ A} ≤

∨
{b ∈

A | b ≤ o}. By compactness and the monotonicity of �, this implies that �a0 ≤ b0 for some a0 ≥ k
and b0 ≤ o. So, by adjunction, a0 ≤ �b0. Hence

k =
∧

{a ∈ A | k ≤ a} ≤ a0 ≤ �b0 ≤
∨

{�b | A � b ≤ o} = �πo.

Let u,v ∈ Aδ such that �δu ≤ v . Then �σk ≤ o, and hence (cf. argument above) k ≤ �πo, for all
K(Aδ ) � k ≤ u and all O(Aδ ) � o ≥ v . Therefore,

u =
∨

{k ∈ K(Aδ ) | k ≤ u} ≤
∧

{�πo | v ≤ o ∈ O(Aδ )} = �δo,

as required. Dually, one shows that u ≤ �δv implies �δu ≤ v for all u,v ∈ Aδ , which completes
the proof that Sδ is a tense algebra. �

Subordination algebras can be equivalently presented as tense slanted BAEs as follows:

Definition 6.6. For every subordination algebra S = (A,≺), its associated tense slanted BAE is
S∗ := (A,�≺,�≺) where �≺ : A → Aδ is defined by the assignment a �→

∧
{b ∈ A | a ≺ b} ∈

K(Aδ ) and �≺ : A → Aδ by the assignment a �→
∨
{b ∈ A | b ≺ a} ∈ O(Aδ ); for every tense

slanted BAE A = (A,�,�), its associated subordination algebra is A∗ := (A,≺�), where a ≺� b iff
�a ≤ b iff a ≤ �b.

Notice that the defining assignments of �+ and �≺ (resp. of �+ and �≺) are verbatim “the
same”(however, the meets and joins are taken in different algebras) but the functional types of �+

and �≺ (respectively, of �+ and �≺) are different.
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Proposition 6.7. For every subordination algebra S = (A,≺) and every tense slanted BAE A =
(A,�,�),

(1) S∗ is a tense slanted BAE, and if S is perfect, then S+ is a perfect tense BAE in the standard
sense;

(2) A∗ is a subordination algebra, and if A is a perfect tense BAE in the standard sense, then A+ is
a perfect subordination algebra;

(3) (S∗)∗ = S and if S is perfect, then (S+)+ = S;
(4) (A∗)

∗ = A and if A is perfect, then (A+)
+ = A;

(5) (�≺)
δ = �≺δ and (�≺)δ = �≺δ ;

(6) ≺�δ= (≺�)
δ ;

(7) (Sδ )+ = (S∗)δ ;
(8) (Aδ )+ = (A∗)

δ ;
(9) if S is perfect, then (Sδ )+ = (S+)δ ;

(10) if A is perfect, then (Aδ )+ = (A+)
δ .

Proof.

(1) By construction, �≺ and �≺ are c-slanted and o-slanted respectively. Hence, it is enough
to show that they are normal and satisfy the tense condition. The identities �≺0 = 0 and
�≺1 = 1 follow directly from S1. Moreover, for any a,b ∈ A, axiom S4 implies that ≺(a,−) ∪
≺(b,−) ⊇ ≺(a∨b,−), which implies that �≺a∨�≺b ≤ �≺(a∨b). Conversely, �≺a∨�≺b =∧
{c ∨ d | a ≺ c and b ≺ d}. From S2 and S4, if a ≺ c and b ≺ d then a ∨ b ≺ c ∨ d . Hence,
�≺(a ∨ b) ≤ �≺a ∨ �≺b, as required. Similarly, one shows that �≺(a ∧ b) = �≺a ∧ �≺b.
Finally, for every a,b ∈ A,

�≺a ≤ b iff a ≺ b iff a ≤ �≺b . (8)

Indeed, by construction, a ≺ b implies �≺a ≤ b and a ≤ �≺b. Moreover, if �≺a ≤ b, then
compactness and the definition of �≺ imply that a ≺ c ≤ b for some c ∈ A, which implies
a ≺ b by S4. Similarly, one shows that a ≤ �≺b implies a ≺ b, which completes the proof
that �≺ and �≺ satisfy the tense condition.
The proof of the second part of the statement (when S is perfect) is similar with a slight
difference: the equivalence (8) arises from the completeness of ≺ rather than from the com-
pactness of Aδ . Indeed, �+a ≤ b implies that a ≺

∧
{c ∈ A | a ≺ c} = �+a ≤ b, which

implies a ≺ b by S4.
(2) It is routine to show that ≺� (respectively, ≺+) satisfies conditions S1 to S4 (respectively,

their infinitary versions).
(3) By definition, the underlying Boolean algebras of S and (S∗)∗ (respectively, (S+)+ if S is

perfect) are identical. Moreover, equivalences (8), already proven in item 1, imply that the
subordination relations of S and (S∗)∗ (respectively, (S+)+) coincide.

(4) The tense BAEs (A∗)
∗ and A share the same underlying Boolean algebra. Hence, (A∗)

∗ = A

if and only if �≺�a :=
∧
{b ∈ A | �a ≤ b} = �a, and �≺�a :=

∨
{b ∈ A | �b ≤ a} =

∨
{b ∈

A | b ≤ �a} = �a. These identities immediately follow from �a ∈ K(Aδ ) and �a ∈ O(Aδ ).
For the perfect case, the equalities �a = �≺�a and �a = �≺�a are trivially verified, since
�a and �a are elements of A and the infimum and supremum are taken in A itself.

(5) Let us preliminarily show that (�≺)
σk = �≺δ k for any k ∈ K(Aδ ). In order to show that∧

{u ∈ Aδ | k ≺δ u} =: �≺δ k ≤ (�≺)
σk :=

∧
{�≺a | a ∈ A and k ≤ a}, it is enough to

show that k ≺δ �≺a for all a ∈ A such that k ≤ a. Since k is closed, by definition (cf. item
2 of Definition 6.2), this is equivalent to showing that k ≺δ o for every o ∈ O(Aδ ) such that
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�≺a ≤ o. By compactness, �≺a :=
∧
{b ∈ A | a ≺ b} ≤ o implies that b1 ∧ . . . ∧ bn ≤ o for

some b1, . . . ,bn ∈ ≺(a,−). Hence, by axiom S3, k ≤ a ≺ b1 ∧ . . . ∧ bn ≤ o, which shows that
k ≺δ o, as required.
Conversely, note first that, by denseness,

�≺δ k :=
∧

{u ∈ Aδ | k ≺δ u} =
∧

{o ∈ O(Aδ ) | k ≺δ o}.

Hence, to prove (�≺)
σk ≤ �≺δ k , it is enough to show that (�≺)

σk ≤ o for every o ∈ O(Aδ )

such that k ≺δ o. For such an o, by definition, k ≤ a ≺ b ≤ o for some a,b ∈ A. Hence, by
definition, (�≺)

σk ≤ �≺a ≤ b ≤ o, as required. The identity (�≺)
σu = �≺δu for all u ∈ Aδ

follows straightforwardly from (�≺)
σk = �≺δ k for all k ∈ K(Aδ ) using the denseness of Aδ

and the complete join-preservation of �≺δ and (�≺)
δ .

At the same time, one shows that (�≺)πo = �≺δ o for all o ∈ O(Aδ ) and therefore, (�≺)πu =
�≺δu for all u ∈ Aδ .

(6) Let us preliminarily show that k ≺�δ o iff k (≺�)
δ o for every k ∈ K(Aδ ) and o ∈ O(Aδ ). If

k ≺�δ o, that is∧
{�a | a ∈ A and k ≤ a} =: �δk ≤ o =

∨
{b ∈ A | b ≤ o},

then, by compactness and since � is monotone, �a ≤ b (i.e., a ≺� b) for some a ∈ A and
b ∈ A such that k ≤ a and b ≤ o. Hence, k (≺�)

δ o. Conversely, if k (≺�)
δ o, i.e., if �a ≤ b

for some a,b ∈ A such that k ≤ a and b ≤ o, then �δk ≤ �a ≤ b ≤ o, which yields k ≺�δ o,

as required. Let us show that u ≺�δ v iff u (≺�)
δ v for all u,v ∈ Aδ . We have

u (≺�)
δ v (9)

⇐⇒ k (≺�)
δ o for any k ∈ K(Aδ ) and o ∈ O(Aδ ) such that k ≤ u and v ≤ o (10)

⇐⇒ k ≺�δ o for any k ∈ K(Aδ ) and o ∈ O(Aδ ) such that k ≤ u and v ≤ o (11)

⇐⇒
∨

{k ∈ K(Aδ ) | k ≤ u} ≺�δ

∧
{o ∈ O(Aδ ) | v ≤ o} (12)

⇐⇒ u ≺�δ v (13)

where (9) ⇐⇒ (10) is the definition of (≺�)
δ , (10) ⇐⇒ (11) is obtained via the preliminary

claim, (11) ⇐⇒ (12) follows from axioms S2∞ and S3∞ for ≺�δ (cf. item (2)) and finally
(12) ⇐⇒ (13) is denseness.

(7) and (8) Aδ is the Boolean algebra underlying (Sδ )+, (S∗)δ , (Aδ )+ and (A∗)
δ . Moreover, the

modal operators of (Sδ )+ and (S∗)δ are, respectively, �≺δ and �≺δ and (�≺)
δ and (�≺)δ

which coincide pairwise (cf. item 5). Finally, the subordination relations of (Aδ )+ and (A∗)
δ

are, respectively, ≺�δ and (≺�)
δ which coincide, (cf. item (6)).

(9) and (10) The proofs are relatively similar to the ones of the non-perfect case with slightly
different justifications: as in item (1), the completeness of ≺, �, and � is used instead of the
compactness of Aδ . As an example, we prove item (9) and leave item (10) to the reader. As
remarked above, (Sδ )+ and (S+)δ have Aδ as their underlying Boolean algebras. Hence, to
finish the proof, let us show that the modal operators coincide. Since (�+)δ and �≺δ are

completely join-preserving, by denseness it enough to show that for every k ∈ K(Aδ ),

�≺δ k :=
∧

{o ∈ O(Aδ ) | k ≤ a ≺ b ≤ o for some a,b ∈ A}

=
∧

{�+a | k ≤ a ∈ A} := (�+)δk .

If k ≤ a, then b := �+a ∈ A ⊆ O(Aδ ) and k ≤ a ≺ �+a ≤ �+a, which implies that
�≺δ k ≤ (�+)δk . Conversely, if o ∈ O(Aδ ) is such that k ≤ a ≺ b ≤ o for some a,b ∈ A, then
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�+a ≤ b ≤ o and hence (�+)δk ≤ �+a ≤ b ≤ o ≤ �≺δ k . At the same time, one shows that

�≺δ o = (�+)δo for every o ∈ O(Aδ ), which is enough to prove that �≺δ and (�+)δ coincide.

Remark 6.8. In Proposition 6.7, we showed that subordination algebras can be equivalently pre-
sented as tense slanted BAEs. In fact, subordination algebras can be also equivalently presented
both as slanted BAEs of the form Ac = (A,�) (which we refer to as closed slanted BAEs), and as
slanted BAEs of the form Ao = (A,�) (which we refer to as open slanted BAEs). Hence, closed,
open, and tense slanted BAEs are all equivalent presentations. These equivalences can of course
be described without using subordination algebras as mediators. Namely, a slanted tense BAE
A = (A,�,�) is mapped to the closed slanted BAE Ac = (A,�) while a closed slanted BAE
A = (A,�) is mapped to the tense algebra At = (A,�,��) where �� is the restriction to A of the
adjoint of �δ . The equivalence between tense and open BAEs is defined similarly.

Remark 6.9. Open slanted BAEs (in the sense of Remark 6.8) are isomorphic to the quasi-modal
algebras developed by Celani [3]. Recall that a quasi-modal algebra is a pair Q = (B,Δ) where B
is a Boolean algebra, Δ : B → I(B), where I(B) denotes the set of the ideals of B, satisfying the
following conditions: Δ(a ∧ b) = Δa ∩ Δb and Δ1 = A. It is then clear that the order-isomorphism
between the ideals of B and open elements of Bδ (cf. [20, Theorem 2.5]) can be used to estab-
lish an equivalence between quasi-modal algebras and open slanted BAEs (see Example 3.3). But
this equivalence is not surprising, given that subordination algebras and quasi-modal algebras are
known to be equivalent (cf., e.g., [4, Theorem 15]).

Let L = L(F ,G) be the BAE language such that F = {�,�} and G = {�,�}, all modal
connectives being unary and positive. Satisfaction and validity of L-formulas/inequalities on sub-
ordination algebras can be defined in terms of Definition 6.3 as follows:

Definition 6.10. Definition 6.10. For every subordination algebra S = (A,≺) every assignment
v : PROP → A, and every modal inequality φ ≤ ψ ,

(S,v) |= φ ≤ ψ iff ((Sδ )+, e · v) |= φ ≤ ψ

where e : A → Aδ is the canonical embedding. As to validity,

S |= φ ≤ ψ iff (Sδ )+ |=S φ ≤ ψ .

Proposition 6.11. For every (perfect) subordination algebra S = (A,≺) every slanted (respec-
tively, perfect) BAE A = (A,�), and every L-inequality φ ≤ ψ ,

(1) S |= φ ≤ ψ iff S∗ |= φ ≤ ψ ;
(2) A |= φ ≤ ψ iff A∗ |= φ ≤ ψ ;
(3) S |= φ ≤ ψ iff S+ |= φ ≤ ψ ;
(4) A |= φ ≤ ψ iff A+ |= φ ≤ ψ .

Proof. For item (1), we recall that S |= φ ≤ ψ if and only if (Sδ )+ |=S φ ≤ ψ . We also recall that,
by Proposition 6.7, we have (Sδ )+ = (S∗)δ . Hence, we have S |= φ ≤ ψ if and only if (S∗)δ |=S φ ≤ ψ .
The conclusion now follows from the fact that S and S∗ have the same underlying Boolean algebra.
Items (2) to (4) are proved similarly. �

Proposition 6.12. For every s-canonical L-inequality φ ≤ ψ and every subordination algebra S,

S |= φ ≤ ψ ⇔ Sδ |= φ ≤ ψ .

Proof. The argument can be summarized by means of the following diagram:
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S |= φ ≤ ψ Sδ |= φ ≤ ψ
�

� ((S∗)δ )+ |= φ ≤ ψ
�

S∗ |= φ ≤ ψ ⇔ (S∗)δ |= φ ≤ ψ

The bi-implication on the left is due to Proposition 6.11.1; the horizontal bi-implication holds
by assumption; the lower bi-implication on the right is due to Proposition 6.11.4; the upper bi-
implication on the right is due to Proposition 6.7.7. �

Hence, as an immediate consequence Proposition 6.12 and Theorem 4.1, we get the following:

Corollary 6.13. For every analytic inductive L-inequality φ ≤ ψ and every subordination alge-
bra S,

S |= φ ≤ ψ ⇔ Sδ |= φ ≤ ψ .

Finally, we show that the corollary above strengthens [17, Corollary 3.8], by verifying that sub-
Sahlqvist L-formulas are a proper subclass of analytic inductive L-formulas.

Definition 6.14.

(1) An L-formula is closed (respectively, open) if it is built up from constants �, ⊥, propositional
variables and their negations, by applying ∨, ∧, �, and � (respectively, ∨, ∧, �, and �);

(2) An L-formula is positive (respectively, negative) if it is built up from constants �, ⊥, and
propositional variables (respectively, negations of propositional variables) by applying ∧, ∨,
�, �, �, and �;

(3) An L-formula is sub-positive (respectively, sub-negative) if it is built up from closed positive
formulas (respectively, open negative formulas) by applying ∨, ∧, �, and � (respectively, ∨,
∧, �, and �);

(4) A boxed atom is an L-formula built up from propositional variables by applying � and �;
(5) An L-formula is strongly positive if it is a conjunction of boxed atoms;
(6) An L-formula is untied if it is built up from strongly positive and sub-negative formulas

using only ∧, �, and �; and
(7) A sub-Sahlqvist formula is an L-formula of the formψ [(φ1 → φ2)/!x] whereψ (!x) is a boxed

atom, φ1 is untied, and φ2 is sub-positive.

Proposition 6.15. For every L-formula φ, letting ε denote the order-type constantly equal to 1,

(1) If φ is closed (respectively, open), then −φ is PIA (respectively, Skeleton);
(2) If φ is positive (respectively, negative), then −φ (respectively, +φ) is ε∂-uniform.
(3) If φ is closed positive (respectively, open negative), then −φ (respectively, +φ) is ε∂-uniform PIA.
(4) If φ is strongly positive, then +φ is PIA, and each of its branches is excellent.
(5) If φ is sub-positive (respectively, sub-negative), then −φ (respectively, +φ) is ε∂-uniform and all

of its branches are good.
(6) If φ is untied, then +φ is analytic ε-Sahlqvist.
(7) If φ is sub-Sahlqvist, then −φ is analytic ε-Sahlqvist, hence so is � ≤ φ.

Proof. Items 1 and 2 immediately follow from the definitions involved. Item 3 is an immediate
consequence of items 1 and 2. Item 4 immediately follows from item 3 and the definition of excellent
branch. Item 5 follows from item 3 and the definition of a good branch. Item 6 follows from the fact
that, by items 4 and 5, any untied formula is built up from positive PIA-formulas every branch of
which is excellent and ε∂-uniform formulas every branch of which is good, by applying Skeleton
connectives. Clearly, this application will maintain both the good shape of ε∂-critical branches,
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and the excellent shape of ε-critical branches. Finally, item (7) follows from the observation that
if ψ (!x) is a boxed atom, then −ψ [(y → z)/!x] is a Skeleton formula, and hence, replacing the
placeholder variable z with the ε∂-uniform formula φ2 all of the branches of which are good, and
the placeholder variable x with the analytic ε-Sahlqvist formula φ1 will yield again an analytic
ε-Sahlqvist formula. �

7 CONCLUSIONS

In this article, we have explored the topological properties of a class of LE-inequalities, the analytic
inductive inequalities, which has been originally introduced in [29] as a concrete syntactic approx-
imation of the proof-theoretic notion of analyticity in the context of proper display calculi [37].
The theoretical background in which this connection between topological and proof-theoretic
properties could be established is unified correspondence theory [9], which applies algebraic and
duality-theoretic techniques in the development of (generalized) Sahlqvist correspondence and
canonicity results for nonclassical logics, and which has recently established systematic connec-
tions between generalized Sahlqvist theory and the core issue in structural proof theory of identi-
fying large classes of analytic axioms and algorithmically computing their corresponding analytic
structural rules, yielding precisely the notion of analytic inductive inequalities. The main result of
the present paper is that the topological properties induced by the syntactic shape of analytic in-
ductive LE-inequalities guarantee their algebraic canonicity in the setting of slanted LE-algebras of
the appropriate signature (cf. Definition 3.2). This canonicity result connects and extends a number
of recent canonicity results in very different areas: subordination algebras, quasi-modal algebras,
and the transfer of canonicity via Gödel-McKinsey-Tarski translations.

Slanted LEs as a Comprehensive Mathematical Environment. In this article, we attributed a name
to a notion (that of slanted operations, cf. Definition 3.1, from which the ensuing notion of slanted
algebra derives) instances of which have cropped up in the literature in many contexts and with
different angles, scopes, and motivations, spanning from the theory of (generalized) canonical ex-
tensions of maps [23] and their adjoints [34], to de Vries algebras [18] and their generalizations
(in the equivalent forms of quasi-modal algebras, [3], pre-contact algebras [19] and subordination
algebras [1]), and the Gödel-McKinsey-Tarski translation [16]. While the connection with duality-
theoretic aspects is very much present in each of these contexts taken separately, the environment
of slanted algebras as defined in this article makes it possible to provide a purely algebraic, modu-
lar, and uniform reformulation and generalization of extant results, and explore, as we have started
to do, generalized settings, such as the (constructive) “non-distributive”one of the present paper,
also paving the way towards their investigation with duality-theoretic and topological techniques
on relational structures based, e.g., on polarities and reflexive graphs (cf. [14]). This line of inves-
tigation is ongoing.

Equivalence, Morphisms, and Duality. Related to the previous point, the environment of slanted
LE lends itself naturally to be investigated with universal algebraic and category-theoretic tools,
starting with the definition of slanted homomorphisms as lattice homomorphisms h : A1 → A2

such as the following diagrams commute for every f ∈ F and д ∈ G:

Aδ
1

hδ

−→ Aδ
2 Aδ

1

hδ

−→ Aδ
2

f A1 ↑ ↑ f A2 дA1 ↑ ↑дA2

A
εf

1

h
εf

−→ A
εf

2 A
εд

1

hεд

−→ A
εд

2

This line of investigation is ongoing.
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From Normal to Non-Normal Settings. Although the best-known examples of applications of the
theory of canonical extensions (e.g., [31]) concern logics in which the additional operations are
all normal (i.e., coordinate-wise preserving or reversing all finite joins, for f -type operations, or
meets, for д-type operations), the theory itself applies to arbitrary maps [23], and has already been
applied to develop canonicity, correspondence and proof-theoretic results for non-normal logics
in several settings, including the Boolean [5], the distributive [35] and the general lattice [7, 13].
In this article, we have addressed slanted canonicity in the setting of normal slanted LEs, in the
sense indicated above (see also the discussion after Definition 3.1). A further direction that can
be naturally pursued in this algebraic context concerns the development of (constructive) slanted
canonicity results in the context of non-normal slanted algebras. This direction invests the study
of the notion of weakening relation [33] as generalized subordination, and its possible applications
in obtaining semantic cut elimination results generalizing those in, e.g., [28].

A APPENDIX

A.1 Topological Properties of Slanted Operations and Their Residuals

Fix a language LLE, and a slanted LLE-algebra A = (A,F A,GA) for the remainder of this section.
This subsection collects the relevant order-theoretic and topological properties of the additional
operations of A and their adjoints, which will be critical for the proof of the “topological versions”
of the Ackermann lemmas in Section A.2. These results are the straightforward generalization to
the setting of slanted algebras of properties that are well known to hold in the setting of normal
LEs (e.g., [12, Section 10]). In what follows, we use the terminology ∂-monotone (respectively, ∂-
antitone, ∂-positive, ∂-negative, ∂-open, ∂-closed) to mean its opposite, i.e., antitone (respectively,
monotone, negative, positive, closed, open). By 1-monotone (respectively, antitone, positive, neg-
ative, open, closed) we simply mean monotone (antitone, positive, negative, open, closed). Also
in symbols, for example, we will write (O(Aδ ))1 for O(Aδ ) and (O(Aδ ))∂ for K(Aδ ), and similarly
(K(Aδ ))1 for K(Aδ ) and K(Aδ )∂ for O(Aδ ). This convention generalizes to order-types and tuples
in the obvious way. Thus, for example, (O(Aδ ))ε is the Cartesian product of sets withO(Aδ ) as ith
coordinate where εi = 1 and K(Aδ ) for jth coordinate where εj = ∂.

Lemma A.1. For all f ∈ F A, д ∈ GA, k ∈ (K(Aδ ))εf , and o ∈ (O(Aδ ))εд ,

(1) д(o) ∈ O(Aδ ),

(2) f (k) ∈ K(Aδ ).

Proof. These facts straightforwardly follow from the fact that each f ∈ F A
δ

(respectively,

д ∈ GA
δ

) is the σ -extension (respectively, π -extension) of the corresponding operation in A: for
instance, д(o) = дπ (o) =

∨
{д(a) | a ∈ Aεд and a ≤εд o}, and д(a) ∈ O(Aδ ) for each a ∈ Aεд . �

Remark A.2. In the standard setting in which any f ∈ F A and д ∈ GA maps tuples of clopen

elements to clopen elements, it also holds (cf. [12, Lemma 10.2]) that, for all k ∈ (K(Aδ ))εf , and
o ∈ (O(Aδ ))εд ,

(1) If o ∈ (O(Aδ ))εд , then f (o) ∈ O(Aδ ),

(2) If k ∈ (K(Aδ ))εf , then д(k) ∈ K(Aδ ).

Clearly, these properties do not hold in the setting of slanted LEs, as, together with Lemma A.1
they would imply that any slanted operation maps tuples of clopen elements to clopen elements,
which is not true. For a counterexample, let A be an infinite Boolean algebra and x0 be an atom of
Aδ which is not clopen. Then, we define the c-slanted operator � on A defined by the assignment
�a := a ∨ x0 for each a ∈ A. It is clear that a ∨ x0 is not open for every a with x0 � a, as it would
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imply that x0 = (a ∨ x0) ∧ ¬a is open. One can find a counterexample for a д ∈ GA in a similar
fashion.

In the standard setting, these properties are used in the proofs of the counterparts of Lemmas A.6
and A.7 below (cf. Lemmas 10.6 and 10.7 of [12]). However, rather than being formulated in terms
of syntactically open and closed formulas, Lemmas A.6 and A.7 are formulated in terms of the
more restricted notions of ssc and sso, which is why their proofs go through nonetheless.

The proof of the following lemma is verbatim the same as the one of Lemma 10.3 in [12], since,
in that proof, it is only needed that д(a) is an open element and f (a) is a closed element. For the
sake of self-containdness, we report the proof.

Lemma A.3. For all f ∈ F , д ∈ G, 1 ≤ i ≤ nf , and 1 ≤ j ≤ nд ,

(1) If εд(j) = 1, then д�j (k) ∈ K(Aδ ) for every k ∈ (K(Aδ ))
ε

д�
j ;

(2) If εд(j) = ∂, then д�j (o) ∈ O(Aδ ) for every o ∈ (O(Aδ ))
ε

д�
j ;

(3) If εf (i) = 1, then f �i (o) ∈ O(Aδ ) for every o ∈ (O(Aδ ))
ε

f
�

i ;

(4) If εf (i) = ∂, then f �i (k) ∈ K(Aδ ) for every k ∈ (K(Aδ ))
ε

f
�

i .

Proof. (1) By denseness, д�j (k) =
∧
{o ∈ O(Aδ ) | д�j (k) ≤ o}. Let Y := {o ∈ O(Aδ ) | д�j (k) ≤ o}

and X := {a ∈ A | д�j (k) ≤ a}. To show that д�j (k) ∈ K(Aδ ), it is enough to show that
∧
X =

∧
Y .

Since clopens are opens, X ⊆ Y , so
∧
Y ≤

∧
X . In order to show that

∧
X ≤

∧
Y , it suffices

to show that for every o ∈ Y there exists some a ∈ X such that a ≤ o. Let o ∈ Y , i.e., д�j (k) ≤ o.

By residuation, kj ≤ д(k[o/kj ]), where k[o/kj ] denotes the nд-array obtained by replacing the jth

coordinate of k by o. Notice that k[o/kj ] ∈ (O(Aδ ))εд . This immediately follows from the fact that

by assumption, εд�
j
(l) = εд(l) = 1 if l = j and εд�

j
(l) = ε∂д (l) if l � j.

Since kj ∈ K(Aδ ), and д(k[o/kj ]) = дπ (k[o/kj ]) =
∨
{д(a) | a ∈ Aεд and a ≤εд k[o/kj ]}

and д(a) ∈ O(Aδ ), we may apply compactness and get that kj ≤ д(a1) ∨ · · · ∨ д(an) for some

a1, . . . ,an ∈ Aεд s.t. a1, . . . ,an ≤εд k[o/kj ]. Let a = a1 ∨
εд · · · ∨εд an . The εд-monotonicity of д

implies that kj ≤ д(a1) ∨ · · · ∨ д(an) ≤ д(a), and hence д�j (a[kj/aj ]) ≤ aj . The proof is complete

if we show that д�j (k) ≤ д�j (a[kj/aj ]). By the εд�
j
-monotonicity of д�j , it is enough to show that

k ≤
ε

д�
j a[kj/aj ]. Since the two arrays coincide in their jth coordinate, we only need to check that

this is true for every l � j. Recall that εд�
j
(l) = ε∂д (l) if l � j. Hence, the statement immediately

follows from this and the fact that, by construction, a ≤εд k[o/kj ].
(2), (3), and (4) are order-variants of (1). �

The proofs of the following lemmas are verbatim the same as the ones of Lemmas 10.4 and 10.5
in [12].

Lemma A.4. For all f ∈ F and д ∈ G,

(1) д
(∨εд (1) U1, . . . ,

∨εд (nд ) Unд

)
=

∨
{д(u1, . . . ,unд

) | uj ∈ Uj for every 1 ≤ j ≤ nд} for

every nд-tuple (U1, . . . ,Unд
) such that Uj ⊆ O(Aδ )εд (j) and Uj is εд(j)-up-directed for each

1 ≤ j ≤ nд .

(2) f
(∧εf (1) D1, . . . ,

∧εf (nf ) Dnf

)
=

∧
{ f (d1, . . . ,dnf

) | dj ∈ Dj for every 1 ≤ j ≤ nf } for

every nf -tuple (D1, . . . ,Dnf
) such that Dj ⊆ K(Aδ )εf (j) and Dj is εf (j)-down-directed for

each 1 ≤ j ≤ nf .
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Proof. (1) The ‘≥’ direction easily follows from the εд-monotonicity of д. Conversely, by

denseness, it is enough to show that if c ∈ K(Aδ ) and c ≤ д(
∨εд (1) U1, . . . ,

∨εд (nд ) Unд
), then

c ≤ д(u1, . . . ,unд
) for some tuple (u1, . . . ,unд

) such that uj ∈ Uj for each 1 ≤ j ≤ nд . Hence, con-

sider c ≤ д(
∨εд (1) U1, . . . ,

∨εд (nд ) Unд
). Then, д�1 (c,

∨εд U) ≤ε (1) ∨εд (1) U1, where, to enhance

readability, we suppress sub- and superscripts and write
∨εд U for (

∨εд (2) U2, . . . ,
∨εд (nд ) Unд

).

If εд(1) = 1, then εд�
1
(1) = 1 and εд�

1
(l) = ε∂д (l) for every 2 ≤ l ≤ nд . Hence Ul ⊆ O(Aδ )εд (l ) =

K(Aδ )
ε

д�
1
(l )

, hence
∨εд (l ) Ul =

∧ε
д�

1
(l )
Ul ∈ K(Aδ )

ε
д�

1
(l )

for every 2 ≤ l ≤ nд . By Lemma A.3(1),

this implies that д�1 (c,
∨εд U) ∈ K(Aδ ). Hence, by compactness, д�1 (c,

∨εд U) ≤
∨n

i=1 oi for
some o1, . . . ,on ∈ U1. Since U1 is up-directed,

∨n
i=1 oi ≤ u1 for some u1 ∈ U1. Hence c ≤

д(u1,
∨εд U). The same conclusion can be reached via a similar argument if εд(1) = ∂. There-

fore, д�2 (u1, c,
∨εд U) ≤εд (2)

∨εд (2) U2, where
∨εд U now stands for (

∨εд (3) U3, . . . ,
∨εд (nд ) Unд

).

By applying the same reasoning, we can conclude that c ≤ д(u1,u2,
∨εд U) for some u2 ∈ U2, and

so on. Hence, we can then construct a sequenceuj ∈ Uj for 1 ≤ j ≤ nд such that c ≤ д(u1, . . .unд
),

as required.
(2) is order-dual to (1). �

Lemma A.5. For all f ∈ F , д ∈ G, 1 ≤ i ≤ nf , and 1 ≤ j ≤ nд ,

(1) If εд(j) = 1, then

д�j

(∧ ε
д�

j
(1)
D1, . . . ,

∧ ε
д�

j
(nд )

Dnд

)
=
∧

{д�j (d1, . . . ,dnд
) | dh ∈ Dh for every 1 ≤ h ≤ nд}

for every nд-tuple (D1, . . . ,Dnд
) such that Dh ⊆ K(Aδ )

ε
д�

j
(h)

and Dh is εд�
j
(h)-down-directed

for each 1 ≤ h ≤ nд .
(2) If εд(j) = ∂, then

д�j

(∨ ε
д�

j
(1)
U1, . . . ,

∨ ε
д�

j
(nд )

Unд

)
=
∨

{д�j (u1, . . . ,unд
) | uh ∈ Uh for every 1 ≤ h ≤ nд}

for every nд-tuple (U1, . . . ,Unд
) such that Uh ⊆ O(Aδ )

ε
д�

j
(h)

and Uh is εд�
j
(h)-up-directed for

each 1 ≤ h ≤ nд .
(3) If εf (i) = 1, then

f �i

(∨ ε
f
�

i

(1)
U1, . . . ,

∨ ε
f
�

i

(nf )

Unf

)
=
∨

{ f �i (u1, . . . ,unf
) | uh ∈ Uh for every 1 ≤ h ≤ nf }

for every nf -tuple (U1, . . . ,Unf
) such that Uh ⊆ O(Aδ )

ε
f
�

i

(h)
and Uh is ε

f
�

i

(h)-up-directed

for each 1 ≤ h ≤ nf .
(4) If εf (i) = ∂, then

f �i

(∧ ε
f
�

i

(1)
D1, . . . ,

∧ ε
f
�

i

(nf )

Dnf

)
=
∧

{ f �i (d1, . . . ,dnf
) | dh ∈ Dh for every 1 ≤ h ≤ nf }

for every nf -tuple (D1, . . . ,Dnf
) such that Dh ⊆ K(Aδ )

ε
f
�

i

(h)
and Dh is ε

f
�

i

(h)-down-directed

for each 1 ≤ h ≤ nf .
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Proof. 3. The ‘≥’ direction easily follows from the ε
f
�

i

-monotonicity of f �i . For the converse

inequality, by denseness it is enough to show that if we have c ≤ f �i (
∨ε

f
�

i

(1)
U1, . . . ,

∨ε
f
�

i

(nf )

Unf
)

for a closed element c , then c ≤ f �i (u1, . . . ,unf
) for some tuple (u1, . . . ,unf

) such that uh ∈ Uh for

every 1 ≤ h ≤ nf . By residuation, c ≤ f �i (
∨ε

f
�

i

(1)
U1, . . . ,

∨ε
f
�

i

(nf )

Unf
) implies that we have the

inequality f (
∨ε

f
�

i

(1)
U1, . . . , c, . . . ,

∨ε
f
�

i

(nf )

Unf
) ≤

∨ε
f
�

i

(i)
Ui . The assumption εf (i) = 1 implies

that ε
f
�

i

(i) = 1 and ε
f
�

i

(l) = ε∂
f
(l) for every l � i . Hence, Ul ⊆ O(Aδ )

ε
f
�

i

(l )
= K(Aδ )εf (l ), and Ul

is εf (l)-down-directed for every l � i . Recalling that
∨ε

f
�

i

(l )
coincides with

∧εf (l ), we can apply
Lemma A.4(2) and get:

f

(∨ ε
f
�

i

(1)
U1, . . . , c, . . . ,

∨ ε
f
�

i

(nf )

Unf

)
=
∧

{ f (u1, . . . , c, . . . ,unf
) | ul ∈ Ul for every l � i}.

Hence, by compactness, f (
∨ε

f
�

i

(1)
U1, . . . , c, . . . ,

∨ε
f
�

i

(nf )

Unf
) ≤

∨ε
f
�

i

(i)
Ui implies that∧

1≤j≤m

{ f (o(j)1 , . . . , c, . . . ,o
(j)
nf
) | o(j)

l
∈ Ul for all l � i} ≤ o(1)i ∨ · · · ∨ o(n)i

for some o(1)i , . . . ,o
(n)
i ∈ Ui . The assumptions that εf (i) = 1 and that each Uh is ε

f
�

i

(h)-up-directed

for every 1 ≤ h ≤ nf imply that Ui is up-directed and Ul is εf (l)-down-directed for each l � i .

Hence, some u1, . . . ,unf
exist such that ul ≤εf (l )

∧εf (l )

1≤j≤m o(j)
l

and o(1)i ∨ · · · ∨ o(n)i ≤ ui . The εf -

monotonicity of f implies the following chain of inequalities:

f (u1, . . . , c, . . . ,unf
) ≤ f

(∧εf (1)

1≤j≤m o(j)1 , . . . , c, . . . ,
∧εf (nf )

1≤j≤m o(j)nf

)
≤

∧
1≤j≤m{ f (o(j)1 , . . . , c, . . . ,o

(j)
nf
) | o(j)

l
∈ Ul for all l � i}

≤ o(1)i ∨ · · · ∨ o(n)i

≤ ui ,

which implies that c ≤ f �i (u1, . . . ,unf
), as required.

(1), (2), and (4) are order-variants of (3). �

A.2 Proof of the Restricted Ackermann Lemmas (Lemmas 4.6 and 4.7)

For any L+LE-formula φ, any slanted LLE-algebra A and assignment V on Aδ , we write φ(V ) to

denote the extension of φ in Aδ under the assignment V . We remind the reader that, even when
φ is in the basic signature and V is an admissible valuation, φ(V ) may fail to be an element of A
(cf. Remark A.2 for a counterexample).

Let p be a propositional variable occurring in φ and V be any assignment. For any x ∈ Aδ ,
let V [p := x] be the assignment which is identical to V except that it assigns x to p. Then x �→

φ(V [p := x]) defines an operation on Aδ , which we will denote φV
p (x).

The proofs of the following two lemmas are more streamlined versions of those of Lemmas 10.6
and 10.7 of [12]. The modifications concern the differences between the notions of syntactically
closed and open formulas (see Definition 4.2) and ssc and sso (see Definition 4.3).

Lemma A.6. Let φ be ssc andψ sso. LetV be an admissible assignment, c ∈ K(Aδ ) and o ∈ O(Aδ ).

(1)
(a) If φ(p) is positive in p, then φV

p (c) ∈ K(Aδ ), and

(b) ifψ (p) is negative in p, thenψV
p (c) ∈ O(Aδ ).
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(2)
(a) If φ(p) is negative in p, then φV

p (o) ∈ K(Aδ ), and

(b) ifψ (p) is positive in p, thenψV
p (o) ∈ O(Aδ ).

Proof. We prove (1) by simultaneous induction on φ and ψ . Assume that φ(p) is positive in p
andψ (p) is negative in p. The base cases of the induction are those when φ is of the form �, ⊥, p, q
(for propositional variables q different from p) or i, andψ is of the form �, ⊥, q (for propositional
variables q different from p), or m (note that φ cannot be a co-nominal m, since it is syntactically
closed. Also, ψ cannot be p or a nominal i, since ψ is negative in p and is syntactically open,
respectively). These cases follow by noting (1) that V [p := c](⊥) = 0 ∈ A, V [p := c](�) = 1 ∈ A,
andV [p := c](q) = V (q) ∈ A, (2) thatV [p := c](p) = c ∈ K(Aδ ) andV [p := c](i) ∈ J∞(Aδ ) ⊂ K(Aδ ),
and (3) that V [p := c](m) ∈ M∞(Aδ ) ⊂ O(Aδ ) (see discussion after Definition 2.6).

For the remainder of the proof we will not need to refer to the valuationV and will hence omit
reference to it. We will accordingly write φ andψ for φV

p andψV
p , respectively.

In the cases φ(p) = f ∗(φ ′(p),ψ ′(p)) for f ∗ ∈ F ∗, φ(p) = φ1(p) ∧ φ2(p), or φ(p) = φ1(p) ∨ φ2(p)

both φ1(p) and φ2(p) are ssc and positive in p, and each φ ′
i (p) in φ ′(p) is ssc and positive in p, and

eachψ ′
i (p) inψ ′(p) is sso and negative in p. Hence, the claim follows by the inductive hypothesis,

and Lemma A.1(2) if f ∗ ∈ F , Lemma A.3 if f ∗ ∈ F ∗ \ F and the fact that meets and finite joins of
closed elements are closed, respectively.

Similarly, ifψ (p) = д∗(ψ ′(p),φ ′(p)) for д∗ ∈ G∗,ψ (p) = ψ1(p)∨ψ2(p) orψ (p) = ψ1(p)∧ψ2(p), then

bothψ1(p) andψ2(p) are sso and negative in p, and each φ ′
i (p) in φ ′(p) is ssc and positive in p, and

eachψ ′
i (p) inψ ′(p) is sso and negative in p. Hence, the claim follows by the inductive hypothesis,

and Lemma A.1(1) if д∗ ∈ G, Lemma A.3 if д∗ ∈ G∗ \ G and the fact that joins and finite meets of
open elements are open, respectively.

Item (2) can similarly be proved by simultaneous induction on negative φ and positiveψ . �

Lemma A.7. Let φ(p) be ssc, ψ (p) sso, V an admissible assignment, D ⊆ K(Aδ ) be down-directed,

and U ⊆ O(Aδ ) be up-directed.

(1)
(a) If φ(p) is positive in p, then φV

p (
∧

D) =
∧
{φV

p (d) | d ∈ D}, and

(b) ifψ (p) is negative in p, thenψV
p (

∧
D) =

∨
{ψV

p (d) | d ∈ D}.

(2)
(a) If φ(p) is negative in p, then φV

p (
∨

U) =
∧
{φV

p (u) | u ∈ U}, and

(b) ifψ (p) is positive in p, thenψV
p (

∨
U) =

∨
{ψV

p (u) | u ∈ U}.

Proof. We prove (1) by simultaneous induction on φ andψ . The base cases of the induction on
φ are those when it is of the form �, ⊥, p, a propositional variable q other than p, or i, and for ψ
those when it is of the form �, ⊥, a propositional variable q other than p or m. In each of these
cases, the claim is trivial.

For the remainder of the proof, we will omit reference to the assignment V and simply write φ
andψ for φV

p andψV
p , respectively.

In the cases in which φ(p) = φ1(p) ∨ φ2(p), φ(p) = φ1(p) ∧ φ2(p), φ(p) = f ∗(φ ′(p),ψ ′(p)),ψ (p) =

ψ1(p) ∧ ψ2(p), ψ (p) = ψ1(p) ∨ ψ2(p), ψ (p) = д∗(ψ ′(p),φ ′(p)), we have that φ1 and φ2 are ssc and

positive in p and ψ1 and ψ2 are sso and negative in p, and moreover, each φ ′
i (p) in φ ′(p) is ssc and

positive in p, and eachψ ′
j (p) inψ ′(p) is sso and negative in p.
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Hence, when φ(p) = φ1(p) ∧ φ2(p) and ψ (p) = ψ1(p) ∨ψ2(p), the claim follows by the inductive
hypothesis and the associativity of, respectively, meet and join.

If φ(p) = φ1(p) ∨ φ2(p), then

φ(
∧

D) = φ1(
∧

D) ∨ φ2(
∧

D)

=
∧
{φ1(ci ) | ci ∈ D} ∨

∧
{φ2(ci ) | ci ∈ D} (induction hypothesis)

=
∧
{φ1(ci ) ∨ φ2(c j ) | ci , c j ∈ D} (∗)

=
∧
{φ1(c) ∨ φ2(c) | c ∈ D} (φ monotone and D down-directed)

=
∧
{φ(c) | c ∈ D},

where the equality marked with (∗) follows from a restricted form of distributivity enjoyed by
canonical extensions of general bounded lattices (cf. [22, Lemma 3.2]), applied to the family
{A1,A2} such that Ai := {φi (c j ) | c j ∈ D} for i ∈ {1, 2}. Specifically, the monotonicity in p of
φi (p) and D being down-directed imply that A1 and A2 are down-directed subsets, which justifies
the application of [22, Lemma 3.2].

If φ(p) = f ∗(φ ′(p),ψ ′(p)), with f ∗ ∈ F ∗, then

φ(∧D) = f ∗(φ ′(∧D),ψ ′(∧D)) =

f ∗(
∧

d ∈D φ ′
1(d), . . . ,

∧
d ∈D φ ′

k
(d),

∨
d ∈D ψ ′

k+1
(d), . . . ,

∨
d ∈D ψ ′

nf ∗
(d)).

The second equality above holds by the inductive hypothesis. To finish the proof, we need to show
that

f ∗(
∧

d ∈D φ ′
1(d), . . . ,

∨
d ∈D ψ ′

nf ∗
(d)) =

∧
d ∈D f ∗(φ ′(d),ψ ′(d)).

The ‘≤’ direction immediately follows from the monotonicity of f ∗. For the converse inequality,
by denseness, it is enough to show that if o ∈ O(Aδ ) and f ∗(

∧
d ∈D φ ′

1(d), . . . ,
∨

d ∈D ψ ′
f ∗ (d)) ≤ o,

then
∧

d ∈D f ∗(φ ′(d),ψ ′(d)) ≤ o. By Lemmas A.6(1) and A.4 or A.5, according to whether f ∗ ∈ F

or f ∗ ∈ F ∗ \ F , we have:

f ∗(
∧

d ∈D φ ′
1(d), . . . ,

∨
d ∈D ψ ′

nf ∗
(d)) =

∧
{ f ∗(φ ′

1(d1), . . . ,ψ
′
nf ∗

(dnf ∗
)) | dh ∈ D for every 1 ≤ h ≤

nf ∗ }.

By compactness (which can be applied by Lemmas A.1 or A.3, again according to the nature of f ∗,
and A.6(1)), ∧

{ f ∗(φ ′
1(d

(i)
1 ), . . . ,ψ ′

nf ∗
(d (i)nf ∗

)) | 1 ≤ i ≤ n} ≤ o.

Let D′ := {d (i)
h

| 1 ≤ i ≤ n and 1 ≤ h ≤ nf ∗ }. Since D is down-directed, d∗ ≤
∧

D′ for some
d∗ ∈ D. Then, by monotonicity of f ∗ (Recall the notations at the beginning of 2.1) and since each
φ ′

i (p) is positive in p and eachψ ′
j (p) is negative in p, the following chain of inequalities holds

∧
d ∈D f ∗(φ ′(d),ψ ′(d)) ≤ f ∗(φ ′(d∗),ψ ′(d∗))

≤ f ∗(φ ′
1(
∧

1≤i≤n d
(i)
1 ), . . . ,ψ ′

nf ∗
(
∧

1≤i≤n d
(i)
nf ∗

))

≤
∧
{ f ∗(φ ′

1(d
(i)
1 ), . . . ,ψ ′

nf ∗
(d (i)nf ∗

)) | 1 ≤ i ≤ n}

≤ o.

The remaining cases are similar, and left to the reader.
Thus, the proof of item (1) is concluded. Item (2) can be proved similarly by simultaneous induc-

tion on φ negative in p andψ positive in p. �
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Proof of the Righthanded Ackermann Lemma for Admissible Assignments (Lemma 4.6). To keep

the notation uncluttered, we will simply write βi and γi for βi
V
p and γi

V
p , respectively. The impli-

cation from bottom-to-top follows by the monotonicity of the βi and the antitonicity of the γi in
p. Indeed, if α(V ) ≤ u, then, for each 1 ≤ i ≤ n, βi (α(V )) ≤ βi (u) ≤ γi (u) ≤ γi (α(V )).

For the sake of the converse implication, assume that βi (α(V )) ≤ γi (α(V )) for all 1 ≤ i ≤ n.
By Lemma A.6, α(V ) ∈ K(Aδ ). Hence, α(V ) =

∧
{a ∈ A | α(V ) ≤ a}, making it the meet of a

down-directed subset of K(Aδ ). Thus, for any 1 ≤ i ≤ n, we have

βi (
∧

{a ∈ A | α(V ) ≤ a}) ≤ γi (
∧

{a ∈ A | α(V ) ≤ a}).

Since γi is syntactically open and negative in p, and βi is syntactically closed and positive in p, we
may apply Lemma A.7 and equivalently obtain∧

{βi (a) | a ∈ A, α(V ) ≤ a} ≤
∨

{γi (a) | a ∈ A, α(V ) ≤ a}.

By lemma A.6, βi (a) ∈ K(Aδ ) and γi (a) ∈ O(Aδ ) for each a ∈ A. Hence by compactness,

βi (b1) ∧ · · · βi (bk ) ≤ γi (a1) ∨ · · · ∨ γi (am).

for some a1, . . . ,am ,b1, . . .bk ∈ A with α(V ) ≤ aj , 1 ≤ j ≤ m, and α(V ) ≤ bh , 1 ≤ h ≤ k . Let
ai = b1 ∧ · · · ∧ bk ∧ a1 ∧ · · · ∧ am . Then, α(V ) ≤ ai ∈ A. By the monotonicity of βi and the
antitonicity of γi it follows that:

βi (ai ) ≤ γi (ai ).

Now, letting u = a1 ∧ · · · ∧ an , we have α(V ) ≤ u ∈ A, and by the monotonicity of the βi and the
antitonicity of the γi we get that

βi (u) ≤ γi (u) for all 1 ≤ i ≤ n.

Proof of the Lefthanded Ackermann Lemma for Admissible Assignments (Lemma 4.7). As in the

previous lemma, we will write βi andγi for βi
V
p andγi

V
p , respectively. The implication from bottom

to top follows by the antitonicity of the βi and the monotonicity of the γi .

For the sake of the converse implication, assume that βi
V
p (α(V )) ≤ γi

V
p (α(V )) for all 1 ≤ i ≤ n.

But α is syntactically open and (trivially) negative in p, hence by Lemma A.6(2), α(V ) ∈ O(Aδ ), i.e.,
α(V ) =

∨
{a ∈ A | a ≤ α(V )}. Thus, for any 1 ≤ i ≤ n, it is the case that

βi (
∨

{a ∈ A | a ≤ α(V )}) ≤ γi (
∨

{a ∈ A | a ≤ α(V )}).

Hence, by Lemma A.7(3) and 8.7(4):∧
{βi (a) | a ∈ A,a ≤ α(V )} ≤

∨
{γi (a) | a ∈ A,a ≤ α(V )}.

The proof now proceeds like that of Lemma 4.6.
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