3,244 research outputs found

    Abstraction of Elementary Hybrid Systems by Variable Transformation

    Full text link
    Elementary hybrid systems (EHSs) are those hybrid systems (HSs) containing elementary functions such as exp, ln, sin, cos, etc. EHSs are very common in practice, especially in safety-critical domains. Due to the non-polynomial expressions which lead to undecidable arithmetic, verification of EHSs is very hard. Existing approaches based on partition of state space or over-approximation of reachable sets suffer from state explosion or inflation of numerical errors. In this paper, we propose a symbolic abstraction approach that reduces EHSs to polynomial hybrid systems (PHSs), by replacing all non-polynomial terms with newly introduced variables. Thus the verification of EHSs is reduced to the one of PHSs, enabling us to apply all the well-established verification techniques and tools for PHSs to EHSs. In this way, it is possible to avoid the limitations of many existing methods. We illustrate the abstraction approach and its application in safety verification of EHSs by several real world examples

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Interpolant-Based Transition Relation Approximation

    Full text link
    In predicate abstraction, exact image computation is problematic, requiring in the worst case an exponential number of calls to a decision procedure. For this reason, software model checkers typically use a weak approximation of the image. This can result in a failure to prove a property, even given an adequate set of predicates. We present an interpolant-based method for strengthening the abstract transition relation in case of such failures. This approach guarantees convergence given an adequate set of predicates, without requiring an exact image computation. We show empirically that the method converges more rapidly than an earlier method based on counterexample analysis.Comment: Conference Version at CAV 2005. 17 Pages, 9 Figure

    PrIC3: Property Directed Reachability for MDPs

    Get PDF
    IC3 has been a leap forward in symbolic model checking. This paper proposes PrIC3 (pronounced pricy-three), a conservative extension of IC3 to symbolic model checking of MDPs. Our main focus is to develop the theory underlying PrIC3. Alongside, we present a first implementation of PrIC3 including the key ingredients from IC3 such as generalization, repushing, and propagation

    Integrating Abstraction Techniques for Formal Verification of Analog Designs

    Get PDF
    The verification of analog designs is a challenging and exhaustive task that requires deep understanding of physical behaviours. In this paper, we propose a qualitative based predicate abstraction method for the verification of a class of non-linear analog circuits. In the proposed method, system equations are automatically extracted from a circuit diagram by means of a bond graph. Verification is applied based on combining techniques from constraint solving and computer algebra along with symbolic model checking. Our methodology has the advantage of avoiding exhaustive simulation normally encountered in the verification of analog designs. To this end, we have used Dymola, Hsolver, SMV and Mathematica to implement the verification flow. We illustrate the methodology on several analog examples including Colpitts and tunnel diode oscillators

    BDD for Complete Characterization of a Safety Violation in Linear Systems with Inputs

    Full text link
    The control design tools for linear systems typically involves pole placement and computing Lyapunov functions which are useful for ensuring stability. But given higher requirements on control design, a designer is expected to satisfy other specification such as safety or temporal logic specification as well, and a naive control design might not satisfy such specification. A control designer can employ model checking as a tool for checking safety and obtain a counterexample in case of a safety violation. While several scalable techniques for verification have been developed for safety verification of linear dynamical systems, such tools merely act as decision procedures to evaluate system safety and, consequently, yield a counterexample as an evidence to safety violation. However these model checking methods are not geared towards discovering corner cases or re-using verification artifacts for another sub-optimal safety specification. In this paper, we describe a technique for obtaining complete characterization of counterexamples for a safety violation in linear systems. The proposed technique uses the reachable set computed during safety verification for a given temporal logic formula, performs constraint propagation, and represents all modalities of counterexamples using a binary decision diagram (BDD). We introduce an approach to dynamically determine isomorphic nodes for obtaining a considerably reduced (in size) decision diagram. A thorough experimental evaluation on various benchmarks exhibits that the reduction technique achieves up to 67%67\% reduction in the number of nodes and 75%75\% reduction in the width of the decision diagram.Comment: 16 pages, 5 figures, 2 table
    corecore