45,943 research outputs found

    State-Augmentation Transformations for Risk-Sensitive Reinforcement Learning

    Full text link
    In the framework of MDP, although the general reward function takes three arguments-current state, action, and successor state; it is often simplified to a function of two arguments-current state and action. The former is called a transition-based reward function, whereas the latter is called a state-based reward function. When the objective involves the expected cumulative reward only, this simplification works perfectly. However, when the objective is risk-sensitive, this simplification leads to an incorrect value. We present state-augmentation transformations (SATs), which preserve the reward sequences as well as the reward distributions and the optimal policy in risk-sensitive reinforcement learning. In risk-sensitive scenarios, firstly we prove that, for every MDP with a stochastic transition-based reward function, there exists an MDP with a deterministic state-based reward function, such that for any given (randomized) policy for the first MDP, there exists a corresponding policy for the second MDP, such that both Markov reward processes share the same reward sequence. Secondly we illustrate that two situations require the proposed SATs in an inventory control problem. One could be using Q-learning (or other learning methods) on MDPs with transition-based reward functions, and the other could be using methods, which are for the Markov processes with a deterministic state-based reward functions, on the Markov processes with general reward functions. We show the advantage of the SATs by considering Value-at-Risk as an example, which is a risk measure on the reward distribution instead of the measures (such as mean and variance) of the distribution. We illustrate the error in the reward distribution estimation from the direct use of Q-learning, and show how the SATs enable a variance formula to work on Markov processes with general reward functions

    Probabilistically Safe Policy Transfer

    Full text link
    Although learning-based methods have great potential for robotics, one concern is that a robot that updates its parameters might cause large amounts of damage before it learns the optimal policy. We formalize the idea of safe learning in a probabilistic sense by defining an optimization problem: we desire to maximize the expected return while keeping the expected damage below a given safety limit. We study this optimization for the case of a robot manipulator with safety-based torque limits. We would like to ensure that the damage constraint is maintained at every step of the optimization and not just at convergence. To achieve this aim, we introduce a novel method which predicts how modifying the torque limit, as well as how updating the policy parameters, might affect the robot's safety. We show through a number of experiments that our approach allows the robot to improve its performance while ensuring that the expected damage constraint is not violated during the learning process

    Budgeted Reinforcement Learning in Continuous State Space

    Get PDF
    A Budgeted Markov Decision Process (BMDP) is an extension of a Markov Decision Process to critical applications requiring safety constraints. It relies on a notion of risk implemented in the shape of a cost signal constrained to lie below an - adjustable - threshold. So far, BMDPs could only be solved in the case of finite state spaces with known dynamics. This work extends the state-of-the-art to continuous spaces environments and unknown dynamics. We show that the solution to a BMDP is a fixed point of a novel Budgeted Bellman Optimality operator. This observation allows us to introduce natural extensions of Deep Reinforcement Learning algorithms to address large-scale BMDPs. We validate our approach on two simulated applications: spoken dialogue and autonomous driving.Comment: N. Carrara and E. Leurent have equally contribute

    Control Regularization for Reduced Variance Reinforcement Learning

    Get PDF
    Dealing with high variance is a significant challenge in model-free reinforcement learning (RL). Existing methods are unreliable, exhibiting high variance in performance from run to run using different initializations/seeds. Focusing on problems arising in continuous control, we propose a functional regularization approach to augmenting model-free RL. In particular, we regularize the behavior of the deep policy to be similar to a policy prior, i.e., we regularize in function space. We show that functional regularization yields a bias-variance trade-off, and propose an adaptive tuning strategy to optimize this trade-off. When the policy prior has control-theoretic stability guarantees, we further show that this regularization approximately preserves those stability guarantees throughout learning. We validate our approach empirically on a range of settings, and demonstrate significantly reduced variance, guaranteed dynamic stability, and more efficient learning than deep RL alone.Comment: Appearing in ICML 201
    corecore