2 research outputs found

    Safe Overclocking of Tightly Coupled CGRAs and Processor Arrays using Razor

    No full text
    Abstract—Overclocking a CPU is a common practice among home-built PC enthusiasts where the CPU is operated at a higher frequency than its speed rating. This practice is unsafe because timing errors cannot be detected by modern CPUs and they can be practically undetectable by the end user. Using a timing speculation technique such as Razor, it is possible to detect timing errors in CPUs. To date, Razor has been shown to correct only unidirectional, feed-forward processor pipelines. In this paper, we safely overclock 2D arrays by extending Razor correction to cover bidirectional communication in a tightly coupled or lockstep fashion. To recover from an error, stall wavefronts are produced which propagate across the device. Multiple errors may arise in close proximity in time and space; if the corresponding stall wavefronts collide, they merge to produce a single unified wavefront, allowing recovery from multiple errors with one stall cycle. We demonstrate the correctness and viability of our approach by constructing a proof-of-concept prototype which runs on a traditional Altera FPGA. Our approach can be applied to custom computing arrays, systolic arrays, CGRAs, and also time-multiplexed FPGAs such as those produced by Tabula. As a result, these devices can be overclocked and safely tolerate dynamic, datadependent timing errors. Alternatively, instead of overclocking, this same technique can be used to ‘undervolt ’ the power supply and save energy. I

    Remote Attacks on FPGA Hardware

    Get PDF
    Immer mehr Computersysteme sind weltweit miteinander verbunden und über das Internet zugänglich, was auch die Sicherheitsanforderungen an diese erhöht. Eine neuere Technologie, die zunehmend als Rechenbeschleuniger sowohl für eingebettete Systeme als auch in der Cloud verwendet wird, sind Field-Programmable Gate Arrays (FPGAs). Sie sind sehr flexible Mikrochips, die per Software konfiguriert und programmiert werden können, um beliebige digitale Schaltungen zu implementieren. Wie auch andere integrierte Schaltkreise basieren FPGAs auf modernen Halbleitertechnologien, die von Fertigungstoleranzen und verschiedenen Laufzeitschwankungen betroffen sind. Es ist bereits bekannt, dass diese Variationen die Zuverlässigkeit eines Systems beeinflussen, aber ihre Auswirkungen auf die Sicherheit wurden nicht umfassend untersucht. Diese Doktorarbeit befasst sich mit einem Querschnitt dieser Themen: Sicherheitsprobleme die dadurch entstehen wenn FPGAs von mehreren Benutzern benutzt werden, oder über das Internet zugänglich sind, in Kombination mit physikalischen Schwankungen in modernen Halbleitertechnologien. Der erste Beitrag in dieser Arbeit identifiziert transiente Spannungsschwankungen als eine der stärksten Auswirkungen auf die FPGA-Leistung und analysiert experimentell wie sich verschiedene Arbeitslasten des FPGAs darauf auswirken. In der restlichen Arbeit werden dann die Auswirkungen dieser Spannungsschwankungen auf die Sicherheit untersucht. Die Arbeit zeigt, dass verschiedene Angriffe möglich sind, von denen früher angenommen wurde, dass sie physischen Zugriff auf den Chip und die Verwendung spezieller und teurer Test- und Messgeräte erfordern. Dies zeigt, dass bekannte Isolationsmaßnahmen innerhalb FPGAs von böswilligen Benutzern umgangen werden können, um andere Benutzer im selben FPGA oder sogar das gesamte System anzugreifen. Unter Verwendung von Schaltkreisen zur Beeinflussung der Spannung innerhalb eines FPGAs zeigt diese Arbeit aktive Angriffe, die Fehler (Faults) in anderen Teilen des Systems verursachen können. Auf diese Weise sind Denial-of-Service Angriffe möglich, als auch Fault-Angriffe um geheime Schlüsselinformationen aus dem System zu extrahieren. Darüber hinaus werden passive Angriffe gezeigt, die indirekt die Spannungsschwankungen auf dem Chip messen. Diese Messungen reichen aus, um geheime Schlüsselinformationen durch Power Analysis Seitenkanalangriffe zu extrahieren. In einer weiteren Eskalationsstufe können sich diese Angriffe auch auf andere Chips auswirken die an dasselbe Netzteil angeschlossen sind wie der FPGA. Um zu beweisen, dass vergleichbare Angriffe nicht nur innerhalb FPGAs möglich sind, wird gezeigt, dass auch kleine IoT-Geräte anfällig für Angriffe sind welche die gemeinsame Spannungsversorgung innerhalb eines Chips ausnutzen. Insgesamt zeigt diese Arbeit, dass grundlegende physikalische Variationen in integrierten Schaltkreisen die Sicherheit eines gesamten Systems untergraben können, selbst wenn der Angreifer keinen direkten Zugriff auf das Gerät hat. Für FPGAs in ihrer aktuellen Form müssen diese Probleme zuerst gelöst werden, bevor man sie mit mehreren Benutzern oder mit Zugriff von Drittanbietern sicher verwenden kann. In Veröffentlichungen die nicht Teil dieser Arbeit sind wurden bereits einige erste Gegenmaßnahmen untersucht
    corecore