459,255 research outputs found

    An automated procedure for developing hybrid computer simulations of turbofan engines

    Get PDF
    A systematic, computer-aided, self-documenting methodology for developing hybrid computer simulations of turbofan engines is presented. The methodology makes use of a host program that can run on a large digital computer and a machine-dependent target (hybrid) program. The host program performs all of the calculations and date manipulations needed to transform user-supplied engine design information to a form suitable for the hybrid computer. The host program also trims the self contained engine model to match specified design point information. A test case is described and comparisons between hybrid simulation and specified engine performance data are presented

    Systematic coarse graining: "Four lessons and a caveat" from nonequilibrium statistical mechanics

    Full text link
    With the guidance offered by nonequilibrium statistical thermodynamics, simulation techniques are elevated from brute-force computer experiments to systematic tools for extracting complete, redundancy-free and consistent coarse grained information for dynamic systems. We sketch the role and potential of Monte Carlo, molecular dynamics and Brownian dynamics simulations in the thermodynamic approach to coarse graining. A melt of entangled linear polyethylene molecules serves us as an illustrative example.Comment: 15 pages, 4 figure

    Matrix elements relevant for Delta I=1/2 rule and epsilon-prime from Lattice QCD with staggered fermions

    Full text link
    We perform a study of matrix elements relevant for the Delta I=1/2 rule and the direct CP-violation parameter epsilon-prime from first principles by computer simulation in Lattice QCD. We use staggered (Kogut-Susskind) fermions, and employ the chiral perturbation theory method for studying K to 2 Pi decays. Having obtained a reasonable statistical accuracy, we observe an enhancement of the Delta I=1/2 amplitude, consistent with experiment within our large systematic errors. Finite volume and quenching effects have been studied and were found small compared to noise. The estimates of epsilon-prime are hindered by large uncertainties associated with operator matching. In this paper we explain the simulation method, present the results and address the systematic uncertainties.Comment: 40 pages, 17 figures, LATEX with epsf, to be submitted to Phys. Rev. D. Minor errors are corrected, some wording and notation change

    Layered architecture for quantum computing

    Full text link
    We develop a layered quantum computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface code quantum error correction. In doing so, we propose a new quantum computer architecture based on optical control of quantum dots. The timescales of physical hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum dot architecture we study could solve such problems on the timescale of days.Comment: 27 pages, 20 figure

    Varieties of Exploratory Experimentation in Nanotoxicology

    Get PDF
    There has been relatively little effort to provide a systematic overview of different forms of exploratory experimentation (EE). The present paper examines the growing subdiscipline of nanotoxicology and suggests that it illustrates at least four ways that researchers can engage in EE: searching for regularities; developing new techniques, simulation models, and instrumentation; collecting and analyzing large swaths of data using new experimental strategies (e.g., computer-based simulation and “high-throughput” instrumentation); and structuring an entire disciplinary field around exploratory research agendas. In order to distinguish these and other activities more effectively, the paper proposes a taxonomy that includes three dimensions along which types of EE vary: (1) the aim of the experimental activity, (2) the role of theory in the activity, and (3) the methods or strategies employed for varying experimental parameters

    Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    Get PDF
    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that re-ported a large discrepancy of neutron lifetime with the current particle data value. Our partial re-analysis suggests the possibility of systematic effects that were not included in this publication.Comment: 39 pages, 9 figures; additional calculations include
    corecore