9,541 research outputs found

    Kernel conditional quantile estimation via reduction revisited

    Get PDF
    Quantile regression refers to the process of estimating the quantiles of a conditional distribution and has many important applications within econometrics and data mining, among other domains. In this paper, we show how to estimate these conditional quantile functions within a Bayes risk minimization framework using a Gaussian process prior. The resulting non-parametric probabilistic model is easy to implement and allows non-crossing quantile functions to be enforced. Moreover, it can directly be used in combination with tools and extensions of standard Gaussian Processes such as principled hyperparameter estimation, sparsification, and quantile regression with input-dependent noise rates. No existing approach enjoys all of these desirable properties. Experiments on benchmark datasets show that our method is competitive with state-of-the-art approaches.

    Making Risk Minimization Tolerant to Label Noise

    Full text link
    In many applications, the training data, from which one needs to learn a classifier, is corrupted with label noise. Many standard algorithms such as SVM perform poorly in presence of label noise. In this paper we investigate the robustness of risk minimization to label noise. We prove a sufficient condition on a loss function for the risk minimization under that loss to be tolerant to uniform label noise. We show that the 010-1 loss, sigmoid loss, ramp loss and probit loss satisfy this condition though none of the standard convex loss functions satisfy it. We also prove that, by choosing a sufficiently large value of a parameter in the loss function, the sigmoid loss, ramp loss and probit loss can be made tolerant to non-uniform label noise also if we can assume the classes to be separable under noise-free data distribution. Through extensive empirical studies, we show that risk minimization under the 010-1 loss, the sigmoid loss and the ramp loss has much better robustness to label noise when compared to the SVM algorithm

    A Simple Method For Estimating Conditional Probabilities For SVMs

    Get PDF
    Support Vector Machines (SVMs) have become a popular learning algorithm, in particular for large, high-dimensional classification problems. SVMs have been shown to give most accurate classification results in a variety of applications. Several methods have been proposed to obtain not only a classification, but also an estimate of the SVMs confidence in the correctness of the predicted label. In this paper, several algorithms are compared which scale the SVM decision function to obtain an estimate of the conditional class probability. A new simple and fast method is derived from theoretical arguments and empirically compared to the existing approaches. --
    corecore