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Abstract

Support Vector Machines (SVMs) have become a popular learning algorithm,
in particular for large, high-dimensional classification problems. SVMs have been
shown to give most accurate classification results in a variety of applications. Sev-
eral methods have been proposed to obtain not only a classification, but also an
estimate of the SVMs confidence in the correctness of the predicted label. In this
paper, several algorithms are compared which scale the SVM decision function
to obtain an estimate of the conditional class probability.A new simple and fast
method is derived from theoretical arguments and empirically compared to the ex-
isting approaches.

1 Introduction

Support Vector Machines (SVMs) have become a popular learning algorithm, in par-
ticular for large, high-dimensional classification problems. SVMs have been shown to
give most accurate classification results in a variety of applications. Several methods
have been proposed to obtain not only a classification, but also an estimate of the SVMs
confidence in the correctness of the predicted label.

Usually, the performance of a classifier is measured in termsof accuracy or some
other performance measure based on the comparison of the classifiers prediction̂y of
the true classy. But in some cases, this does not give sufficient information. For ex-
ample in credit card fraud detection, one has usually much more negative than positive
examples, such that the optimal classifier may be to the default negative classifier. But
then, still one would like to find out which transactions are most probably fraudulent,
even if this probability is small. In other situations e. g. information retrieval, one could
be more interested in a ranking of the examples with respect to their interestingness in-
stead of a simple yes/no-decision. Third, one may be interested to integrate a classifier
into a bigger system, for example a multi-classifier learner. To combine and compare
the SVM prognosis with that of other learners, one would likea comparable, well-
defined confidence estimate. The best method to achieve a confidence estimate that
allows to rank the examples and gives well-defined, interpretable values, is to estimate
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the conditional class probabilityP (yjx). Obviously, this is a more complex problem
than finding a classificationl(x) 2 f�1; 1g, as it is possible to get a classification
function by comparinĝP (yjx) to the threshold0:5, but not vice versa.

For numerical classifiers, i. e. classifiers of the typel(x) = sign(f(x)) with a
numerical decision functionf , one usually tries to estimation the conditional class
probability from the decision function̂P (yjx) = P̂ (yjf(x)). This reduces the prob-
ability estimation from a multi-variate to a one-dimensional problem, where one has
to find a scaling function� such thatP̂ (Y = 1jx) = �(f(x)). The idea behind this
approach is that the classificationl(x) of examples that lie close to the decision bound-
ary fxjf(x) = 0g can easily change when the examples are randomly perturbed by a
small amount. This is very hard for examples with very high orvery low f(x) (this
argument requires some sort of continuity or differentiability constraints on the func-
tion f ). Hence, the probability that the classifier is correct should be higher for larger
absolute values off . As was noted by Platt [10], this also means there is a strong prior
for selecting a monotonic scaling function�.

The rest of the paper is organized as follows: In the next section, we will shortly
present the Support Vector Machine and Kernel Logistic Regression algorithm, as far
as it is necessary for this paper. In Section 3, existing methods for probabilistic scaling
of SVM outputs will be discussed and a new, simple scaling method will be presented.
The effectiveness of this method will be empirically evaluated in Section 4.

2 Algorithms

2.1 Support Vector Machines

Support Vector Machines are a classification method based onStatistical Learning The-
ory [12]. The goal is to find a functionf(x) = w � x + b that minimizes the expected
Risk R[f ℄ = Z Z L(y; f(x))dP (yjx)dP (x)
of the learner by minimizing the regularized riskRreg[f ℄, which is the weighted sum
of the empirical risk with respect to the data(xi; yi)i=1:::n and a complexity termjjwjj2Rreg[f ℄ = 12 jjwjj2 + CXi j1� yif(xi)j+ (1)

wherej�j+ = max(�; 0): This optimization problem can be efficiently solved in its
dual formulation �12 nXi;j=1�i�jyiyjxi � xj + nXi=1 �i ! min (2)w:r:t: nXi=1 �iyi = 08i : 0 � �i � C
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2.2 The Kernel Trick

The inner productxi �xj in Equation 2 can be replaced by a kernel functionK(xi; xj)
which corresponds to an inner product in some space, called feature space. That is,
there exists a mapping� : X ! X such thatK(x; x0) = �(x) � �(x0). This allows
the construction of non-linear classifiers by an essentially linear algorithm.

The resulting decision function is given byf(x) = w ��(x) + b= nXi=1 yi�iK(xi; x) + b:
The actual SVM classification is given bysign(f(x)). It can be shown that the SVM
solution depends only on its support vectors SV =fxij�i 6= 0g. See [12, 2] for a more
detailed introduction on SVMs.

2.3 Kernel Logistic Regression

Kernel Logistic Regression [13, 5, 14, 11] is the kernelizedversion of the well-known
logistic regression technique. The optimization problem is similar to the SVM problem
in Equation 1 except that an exponential loss function is used instead of the L1 loss:12 jjwjj2 + CXi g(�yi(w � xi � b))! min
where g(�) = log(1 + e�)

As for the SVM, the problem can be solved in its dual formulation [6]:12Xi;j �i�jK(xi; xj) + CXi g(�i)! min :
In contrast to the SVM, Kernel Logistic Regression directlymodels the conditional

class probability, i. e.P (Y = 1jx) can be estimated viaP (yjx) = 11 + e�y(w�x�b) :
The drawback of KLR is that typically all�i are nonzero, as all examples play a

role in estimating the conditional class probability, whereas in the SVM only a small
number of support vectors are needed to classify the examples. Hence, KLR is compu-
tationally much more expensive than the SVM.

3 Probabilistic Scaling of Support Vector Machines

One can easily see that the SVM decision functionf(x) = w � �(x) + b gives the
feature space distance of the transformed example�(x) to the hyperplane defined by
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(w; b). Assuming thatP (Y = 1jx) is continuous inx, it seems reasonable that ex-
amples lying closer to the hyperplane have a larger probability of being misclassified
than examples lying far away (the closer the example is to thehyperplane, the smaller
changes have to be to produce a different classification). Hence, it seem suitable to
model the conditional class probabilityP (yjx) as a function of the value of the SVM
decision function, i. e.̂P (Y = 1jx) = �(f(x)) with an appropriate scaling function�.

There are several ad-hoc scaling functions, e. g. the softmax scaler�softmax(z) = 11 + e�2z ;
which monotonously maps the decision functions valuez = f(x) to the interval[0; 1℄.
The scaler assumes that for the decision function is of the typesign(z) and hence forz = 0 the classifiers class decision is smallest such thatz is mapped to the conditional
class probability0:5. This allows to view�softmax(z) as a probability. However, this
mapping is not very well founded, as the scaled values are notjustified from the data.

To justify the interpretation̂P (Y = 1jx) = �(f(x)), it is better to use data to
calibrate the scaling. One can use a subset of the data which has not been used for
training (or use a cross-validation-like approach) and optimize the scaling function� to
minimize the error between the predicted class probability�(f(x)) and the empirical
class probability defined by the class valuesy in the new data. There are two error
measures which are usually used, cross-entropy and mean squared error. Cross-entropy
is defined by CRE =Xi yilog(zi) + (1� yi)log(1� zi)
(wherezi = �(f(xi))), which is the Kullback-Leibler distance between the predicted
and the empirical class probability. For comparison of different data sets it is better
to divide the cross-entropy by the number of examples and work with the mean cross-
entropy mCRE. The mean squared error is defined byMSE = 1nXi (yi � pi)2:
It is an appropriate error measure because for a binary random variableY 2 f0; 1g,
the expected value of(Y � p)2 is minimized byp = P (Y = 1). Hence, the task
of estimating the conditional class probability becomes a regression task. The open
question is, what types of scaling functions should be fittedto the data.

Motivated by an empirical analysis, Platt [10] uses scalingfunctions of the form�a;b(z) = 11 + e�az+b
with a � 0 to obtain a monotonically increasing function. The parametersa andb are found by minimization of the cross-entropy error over a test set(xi; yi) withzi = f(xi). For an efficient implementation, see [8].

Garczarek [4] proposes a method which scales classificationvalues by�(z) = B�1�1;�1B�1;�1(z)
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whereB�;� is the Beta distribution function with parameters� and�. The parameters�1; �1; �2 and�2 are selected such that over a test set(xi; yi)
1. the average value of�(f(x)) for each class is identical to the classification per-

formance of the classifierf in this class and

2. the mean square error(y � �(f(x)))2 is minimized.

Originally, the algorithm is designed for multiclass problems and computes an indi-
vidual scaler for each predicted class. For binary problems, it is better to modify
this approach such that only one scaler is generated. This avoids discontinuities inP̂ (Y = 1jx) when the prediction changes from one class to the other.

Binning has also been applied to this problem [3]. The decision values are dis-
cretized into several bins and one can estimate the the conditional class probability by
counting the class distribution in the single bins. Other, more complicated approaches
also exists, see e. g. [7] or [12], Ch. 11.11.

3.1 Theoretical Limitations

Bartlett and Tewari [1] show that there is a tradeoff betweensparseness of a classifier
and the ability to estimate conditional probabilities. Their result says, in short, that
if one is able to estimateP (Y = 1jx) on some interval, sparseness is lost in that
region. Hence, the question arises in how far the decision function of the SVM, which
generally produces sparse classifiers, can approximate thetrue conditional density or
the estimate of the non-sparse KLR, respectively.

The problem can be seen in Equation 1. To obtain a maximally accurate classifier,
the SVM containsj1�yif(xi)j+ in its objective function, i. e. the classifier is punished
if yif(xi) < 1 (it becomes a support vector). In this case, this forces an ordering on
the valuesyif(xi) where the value is the higher, the more similar the example isto
the rest of the examples in its class in feature space. Consequently, an estimation ofP (yijxi) can be constructed fromyif(xi). When the example is classified correctly
with sufficient margin, i. e.yif(xi) > 1, this example generates no loss and hence no
specific order is enforced on these examples. For the SVM, allthe examples on the
right side of the margin have the same probabilityP (yjx). This behavior can be seen
in Figure 1.

What can be said about the support vectors? In the previous section we already
saw that minimizing the mean squared error between the estimation function�(f(x))
andy gives a proper estimate ofP (yjx), as for a fixedx the MSE is minimized for�(f(x)) = P (Y = 1jx). However, the error criterion in the SVM is the absolute
error, not the squared error, and one can show that for a fixedx the absolute error is
minimized at�(f(x)) = 1 iff P (Y = 1jx) > 0:5 and�(f(x)) = 0 otherwise. What
comes to the rescue is thatf(x) is not determined for eachx independently, but for allx
together. Hence, if not overfitting occurs, at least a value of f(x) = 0 is an indicator ofP (Y = 1jx) = 0:5 and it seems plausible thatf(x) contains some useful information
aboutP (yjx).
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Figure 1: One-dimensional comparison of SVM and KLR predictions. Negatives ex-
amples are drawn from N(0,1) (dots at y=-1), positive examples from N(2,1) (dots at
y=1). Both methods find the class border at x=1, but the SVM prediction is essentially
constant for y outside [-1,1]. KLR correctly estimates higher confidences for points
nearer to class centers.

3.2 A Simple Estimation Method

From the previous discussion we know that decision functionvalue with jf(x)j > 1
are unreliable for estimating the conditional class probability. Values with jf(x)j � 1
directly optimize the order of the examples with respect toP (yjx). Hence, the question
arises if it is possible to estimateP (Y = 1jx) by the following trivial procedure�01(f(x)) = 8<: p+ iff f(x) > 112 (1 + f(x)) iff f(x) 2 [�1; 1℄p� iff f(x) < �1
wherep+ is the fraction of positive examples withf(x) > 1 andp� is the fraction of
positive examples withf(x) < �1. Forf(x) 2 [�1; 1℄, the SVM function is simply
linearly scaled to[0; 1℄. Similarly, one can define�PP by clippingf(x) at p� andp+
instead of0 and1.

The advantage of this method compared to the existing approaches is that it requires
almost work when training or applying the classifier, exceptcounting the probabilitiesp+ andp� and still gives reasonable, empirically founded probability estimates.

4 Experiments

The experiments were conducted on 11 data sets, including 7 data sets from the UCI
Repository [9] (covtype, diabetes, digits, digits, ionosphere, liver, mushroom, promot-
ers) and 4 other real-world data sets: a business cycle analysis problem (business), an
analysis of a direct mailing application (directmailing),a data set from a life insurance
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company (insurance) and intensive care patient monitoringdata (medicine). Prior to
learning, nominal attributes were binarised and the attributes were scaled to expectancy
0 and variance 1. Multi-class-problems were converted to two-class problems by ar-
bitrarily selecting two of the classes (covtype and digits)or combining smaller classes
into a single class (business, medicine). For the covtype data set, a1% sample was
drawn. The following table sums up the description of the data sets:

Name Size Dimension
covtype 4951 48
diabetes 768 8
digits 776 64
ionosphere 351 34
liver 345 6
mushroom 8124 126
promoters 106 228
business 157 13
directmailing 5626 81
insurance 10000 135
medicine 6610 18

Experiments were made with Support Vector Machines and Kernel Logistic Re-
gression with both linear and radial basis kernel. The parameters of the algorithms
were selected in a prior step to optimize accuracy. The following algorithms were
compared in the experiments:

KLR: Kernel Logistic Regression, used as the baseline.

SVM-Platt: SVM using Platt’s scaling.

SVM-Beta: SVM using Garczarek’s beta scaling.

SVM-Beta-2: SVM using binary beta scaling.

SVM-Bin: SVM and binning.

SVM-Softmax: SVM and softmax scaling.

SVM-01: SVM and outputf(x) clipped between 0 and 1.

SVM-PP: SVM and outputf(x) clipped betweenP (Y = 1jf(x) < �1) andP (Y =1jf(x) > 1).
All reported results were 10-fold cross-validated. For thelinear SVM and KLR, the
following results were obtained:
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Method MSE mCRE
KLR 0.1000 0.0332
SVM-Platt 0.0912 0.0291
SVM-Beta 0.5966 1
SVM-Beta-2 0.0915 0.0301
SVM-Bin (10 bins) 0.1201 0.0384
SVM-Bin (50 bins) 0.1301 0.0415
SVM-Softmax 0.0975 0.0343
SVM-01 0.0970 0.0317
SVM-PP 0.0933 0.0296

With respect to the mean squared error, we get the following ranking: SVM-Platt< SVM-Beta-2< SVM-PP< SVM-01< SVM-Softmax< KLR < SVM-Bin-10<
SVM-Bin-50<< SVM-Beta. Sorting by mean cross-entropy, SVM-Beta-2 and SVM-
PP change places, as well as SVM-Softmax and Bin-10.

The RBF kernel gave the following results:

Method MSE mCRE
KLR 0.0748 0.0242
SVM-Platt 0.0770 0.0250
SVM-Beta 0.6009 1
SVM-Beta-2 0.0819 0.0278
SVM-Bin (10 bins) 0.0939 0.0305
SVM-Bin (50 bins) 0.1106 0.0356
SVM-Softmax 0.0946 0.0327
SVM-01 0.0916 0.0307
SVM-PP 0.0904 0.0289

This gives the following ranking for MSE: KLR< SVM-Platt< SVM-Beta-2<
SVM-PP< SVM-01 < SVM-Bin-10 < SVM-Softmax< SVM-Bin-50 << SVM-
Beta.

A close inspection reveals that these results do not give thefull picture, as the error
measures reach very different values for the individual data sets. E. g. , the MSE for
Kernel Logistic Regression with radial basis kernel runs from 10�7 (mushroom) to0:191 (liver). To allow for a better comparison, the methods were ranked according to
their performance for each data set. The following table gives the average rank of each
of the methods for the linear kernel:
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avg. rank from
Method MSE mCRE
KLR 3.18 3.09
SVM-Platt 3.18 3.45
SVM-Beta 9.00 9.00
SVM-Beta-2 3.27 3.45
SVM-Bin (10 bins) 5.18 5.55
SVM-Bin (50 bins) 6.55 6.45
SVM-Softmax 5.18 5.36
SVM-01 4.91 5.09
SVM-PP 3.45 3.55

The corresponding table for the radial basis kernel:

avg. rank from
Method MSE mCRE
KLR 1.82 1.55
SVM-Platt 2.82 2.64
SVM-Beta 9.00 9.00
SVM-Beta-2 4.27 4.27
SVM-Bin (10 bins) 4.82 4.36
SVM-Bin (50 bins) 6.73 6.73
SVM-Softmax 5.73 5.91
SVM-01 5.36 5.64
SVM-PP 3.64 4.73

To validate the significance of the results, a paired t-test (� = 0:05) was run over the
cross-validation runs. The following table shows the comparison of the cross-entropy
for the linear kernel of the best five of the scaling algorithms. Each row of the table
shows how often the hypothesis that the estimation in that row is better than the esti-
mation in the corresponding column was rejected. E. g. , the 6in the last row and first
column shows that the hypothesis that softmax scaling is better than KLR was rejected
for 6 of the data sets. The contrary hypothesis was rejected on 2 data sets (first row,
last column).

KLR Platt Beta2 PP Bin10 Soft
KLR 0 2 2 2 2 2
Platt 4 0 0 1 1 0
Beta2 4 3 0 2 1 0
PP 6 4 3 0 2 0
Bin10 7 6 6 5 0 3
Soft 6 8 8 6 4 0

These are the results for cross-entropy and the radial basiskernel:
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KLR Platt Beta2 PP Bin10 Soft
KLR 0 0 0 0 0 0
Platt 6 0 0 1 0 0
Beta2 7 6 0 4 1 0
PP 7 5 4 0 2 0
Bin10 8 3 3 3 0 2
Soft 9 9 7 9 6 0

The corresponding tables for MSE show similar results.
Summing up, we see that� Kernel Logistic Regression give the best estimation of the conditional class prob-

ability (with some outliers in the linear case).� The best scaling for the SVM is obtained by Platt’s method andbinary Beta
Scaling.� The trivial PP-scaling performs comparable to the much morecomplicated tech-
niques.� Multiclass Beta scaling gives by far the worst results (which was expected from
the non-continuicity of its method of scaling each predicted class on its own).

5 Summary

The experiments in this paper showed that a trivial method ofestimating the conditional
class probabilityP (yjx) from the output of a SVM classifier performs comparably to
much more complicated estimation techniques.
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