52,516 research outputs found
Nanowire Volatile RAM as an Alternative to SRAM
Maintaining benefits of CMOS technology scaling is becoming challenging due
to increased manufacturing complexities and unwanted passive power
dissipations. This is particularly challenging in SRAM, where manufacturing
precision and leakage power control are critical issues. To alleviate some of
these challenges a novel non-volatile memory alternative to SRAM was proposed
called nanowire volatile RAM (NWRAM). Due to NWRAMs regular grid based layout
and innovative circuit style, manufacturing complexity is reduced and at the
same time considerable benefits are attained in terms of performance and
leakage power reduction. In this paper, we elaborate more on NWRAM circuit
aspects and manufacturability, and quantify benefits at 16nm technology node
through simulation against state-of-the-art 6T-SRAM and gridded 8T-SRAM
designs. Our results show the 10T-NWRAM to be 2x faster and 35x better in terms
of leakage when compared to high performance gridded 8T-SRAM design
A Low-Cost FPGA-Based Test and Diagnosis Architecture for SRAMs
The continues improvement of manufacturing technologies allows the realization of integrated circuits containing an ever increasing number of transistors. A major part of these devices is devoted to realize SRAM blocks. Test and diagnosis of SRAM circuits are therefore an important challenge for improving quality of next generation integrated circuits. This paper proposes a flexible platform for testing and diagnosis of SRAM circuits. The architecture is based on the use of a low cost FPGA based board allowing high diagnosability while keeping costs at a very low leve
UTB SOI SRAM cell stability under the influence of intrinsic parameter fluctuation
Intrinsic parameter fluctuations steadily increases with CMOS technology scaling. Around the 90nm technology node, such fluctuations will eliminate much of the available noise margin in SRAM based on conventional MOSFETs. Ultra thin body (UTB) SOI MOSFETs are expected to replace conventional MOSFETs for integrated memory applications due to superior electrostatic integrity and better resistant to some of the sources of intrinsic parameter fluctuations. To fully realise the performance benefits of UTB SOI based SRAM cells a statistical circuit simulation methodology which can fully capture intrinsic parameter fluctuation information into the compact model is developed. The impact on 6T SRAM static noise margin characteristics of discrete random dopants in the source/drain regions and body-thickness variations has been investigated for well scaled devices with physical channel length in the range of 10nm to 5nm. A comparison with the behaviour of a 6T SRAM based on a conventional 35nm MOSFET is also presented
Impact of random dopant induced fluctuations on sub-15nm UTB SOI 6T SRAM cells
The CMOS scaling increases the impact of intrinsic parameter fluctuation on the yield and functionality of SRAM. A statistical circuit simulation framework which can fully capture intrinsic parameter fluctuation information into the compact model has been developed. The impact of discrete random dopants in the source and drain regions on 6T SRAM cells has been investigated for well scaled ultra thin body (UTB) SOI MOSFETs with physical channel length in the range of 10nm to 5nm
Thin Rechargeable Batteries for CMOS SRAM Memory Protection
New rechargeable battery technology is described and compared with classical primary battery back-up of SRAM PC cards. Thin solid polymer electrolyte cells with the thickness of TSOP memory components (1 mm nominal, 1.1 mm max) and capacities of 14 mAh/sq cm can replace coin cells. The SRAM PC cards with permanently installed rechargeable cells and optional electrochromic low battery voltage indicators will free the periodic PC card user from having to 'feed' their PC cards with coin cells and will allow a quick visual check of stored cards for their battery voltage status
- …
