34,004 research outputs found
On the role of secondary pions in spallation targets
We use particle-transport simulations to show that secondary pions play a
crucial role for the development of the hadronic cascade and therefore for the
production of neutrons and photons from thick spallation targets. In
particular, for the n_TOF lead spallation target, irradiated with 20 GeV/c
protons, neutral pions are involved in the production of ~90% of the
high-energy photons; charged pions participate in ~40% of the integral neutron
yield. Nevertheless, photon and neutron yields are shown to be relatively
insensitive to large changes of the average pion multiplicity in the individual
spallation reactions. We characterize this robustness as a peculiar property of
hadronic cascades in thick targets.Comment: 17 pages, 14 figures. Submitted to Eur. Phys. J.
Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions
The production of heavy nuclides from the spallation-evaporation reaction of
238U induced by 1 GeV protons was studied in inverse kinematics. The
evaporation residues from tungsten to uranium were identified in-flight in mass
and atomic number. Their production cross-sections and their momentum
distributions were determined. The data are compared with empirical
systematics. A comparison with previous results from the spallation of 208Pb
and 197Au reveals the strong influence of fission in the spallation of 238U.Comment: 20 pages, 10 figures, background information at
http://www-wnt.gsi.de/kschmidt
Low energy neutrino scattering measurements at future Spallation Source facilities
In the future several Spallation Source facilities will be available
worldwide. Spallation Sources produce large amount of neutrinos from
decay-at-rest muons and thus can be well adapted to accommodate
state-of-the-art neutrino experiments. In this paper low energy neutrino
scattering experiments that can be performed at such facilities are reviewed.
Estimation of expected event rates are given for several nuclei, electrons and
protons at a detector located close to the source. A neutrino program at
Spallation Sources comprises neutrino-nucleus cross section measurements
relevant for neutrino and core-collapse supernova physics, electroweak tests
and lepton-flavor violation searches.Comment: 12 pages, 4 figures, 5 table
Overcoming High Energy Backgrounds at Pulsed Spallation Sources
Instrument backgrounds at neutron scattering facilities directly affect the
quality and the efficiency of the scientific measurements that users perform.
Part of the background at pulsed spallation neutron sources is caused by, and
time-correlated with, the emission of high energy particles when the proton
beam strikes the spallation target. This prompt pulse ultimately produces a
signal, which can be highly problematic for a subset of instruments and
measurements due to the time-correlated properties, and different to that from
reactor sources. Measurements of this background have been made at both SNS
(ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The
background levels were generally found to be low compared to natural
background. However, very low intensities of high-energy particles have been
found to be detrimental to instrument performance in some conditions. Given
that instrument performance is typically characterised by S/N, improvements in
backgrounds can both improve instrument performance whilst at the same time
delivering significant cost savings. A systematic holistic approach is
suggested in this contribution to increase the effectiveness of this.
Instrument performance should subsequently benefit.Comment: 12 pages, 8 figures. Proceedings of ICANS XXI (International
Collaboration on Advanced Neutron Sources), Mito, Japan. 201
A Spallation Model for the Titanium-rich Supernova Remnant Cassiopeia A
Titanium-rich subluminous supernovae are rare and challenge current SN
nucleosynthesis models. We present a model in which ejecta from a standard
Supernova is impacted by a second explosion of the neutron star (a Quark-nova),
resulting in spallation reactions that lead to 56Ni destruction and 44Ti
creation under the right conditions. Basic calculations of the spallation
products shows that a delay between the two explosions of ~ 5 days reproduces
the observed abundance of 44Ti in Cas A and explains its low luminosity as a
result of the destruction of 56Ni. Our results could have important
implications for lightcurves of subluminous as well as superluminous
supernovae.Comment: Accepted/to be published in Physical Review Letters. [ for more info
on the Quark Nova, see: http://quarknova.ucalgary.ca/
Investigations of fast neutron production by 190 GeV/c muon interactions on different targets
The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus
interactions is poorly understood, yet it is fundamental to the understanding
of the background in many underground experiments. The aim of the present
experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c
muons scattering on carbon, copper and lead targets. We have investigated the
energy spectrum and angular distribution of spallation neutrons, and we report
the result of our measurement of the neutron production differential cross
section.Comment: 19 pages, 11 figures ep
Tests of Fundamental Symmetries with Neutrons
Because of recent technological developments, new opportunities to test fundamental symmetries using cold and ultra-cold neutrons will become available in the next several years. These tests include studies of the parity-violating hadronic weak interaction, searches for new symmetries beyond the standard model using neutron decay and searches for new sources of Charge-conjugation/Parity (CP) violation through the measurement of the neutron Electric Dipole Moment (EDM)
- …
