3 research outputs found

    Unsupervised pattern recognition methods for exploratory analysis of industrial process data

    Get PDF
    The rapid growth of data storage capacities of process automation systems provides new possibilities to analyze behavior of industrial processes. As existence of large volumes of measurement data is a rather new issue in the process industry, long tradition of using data analysis techniques in that field does not yet exist. In this thesis, unsupervised pattern recognition methods are shown to represent one potential and computationally efficient approach in exploratory analysis of such data. This thesis consists of an introduction and six publications. The introduction contains a survey on process monitoring and data analysis methods, exposing the research which has been carried out in the fields so far. The introduction also points out the tasks in the process management framework where the methods considered in this thesis - self-organizing maps and cluster analysis - can be benefited. The main contribution of this thesis consists of two parts. The first one is the use of the existing and development of novel SOM-based methods for process monitoring and exploratory data analysis purposes. The second contribution is a concept where cluster analysis is used to extract and identify operational states of a process from measured data. In both cases the methods have been applied in exploratory analysis of real data from processes in the wood processing industry.reviewe

    Projection-Based Clustering through Self-Organization and Swarm Intelligence

    Get PDF
    It covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm (DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures. The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining

    Projection-Based Clustering through Self-Organization and Swarm Intelligence: Combining Cluster Analysis with the Visualization of High-Dimensional Data

    Get PDF
    Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing; Self-Organization; Emergence; Game Theory; Advanced Analytics; High-Dimensional Data; Multivariate Data; Analysis of Structured Dat
    corecore