243 research outputs found

    CORELA: a cooperative relaying enhanced link adaptation algorithm for IEEE 802.11 WLANs

    Get PDF

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Security and Prioritization in Multiple Access Relay Networks

    Get PDF
    In this work, we considered a multiple access relay network and investigated the following three problems: 1- Tradeoff between reliability and security under falsified data injection attacks; 2-Prioritized analog relaying; 3- mitigation of Forwarding Misbehaviors in Multiple access relay network. In the first problem, we consider a multiple access relay network where multiple sources send independent data to a single destination through multiple relays which may inject a falsified data into the network. To detect the malicious relays and discard (erase) data from them, tracing bits are embedded in the information data at each source node. Parity bits may be also added to correct the errors caused by fading and noise. When the total amount of redundancy, tracing bits plus parity bits, is fixed, an increase in parity bits to increase the reliability requires a decrease in tracing bits which leads to a less accurate detection of malicious behavior of relays, and vice versa. We investigate the tradeoff between the tracing bits and the parity bits in minimizing the probability of decoding error and maximizing the throughput in multi-source, multi-relay networks under falsified data injection attacks. The energy and throughput gains provided by the optimal allocation of redundancy and the tradeoff between reliability and security are analyzed. In the second problem, we consider a multiple access relay network where multiple sources send independent data simultaneously to a common destination through multiple relay nodes. We present three prioritized analog cooperative relaying schemes that provide different class of service (CoS) to different sources while being relayed at the same time in the same frequency band. The three schemes take the channel variations into account in determining the relay encoding (combining) rule, but differ in terms of whether or how relays cooperate. Simulation results on the symbol error probability and outage probability are provided to show the effectiveness of the proposed schemes. In the third problem, we propose a physical layer approach to detect the relay node that injects false data or adds channel errors into the network encoder in multiple access relay networks. The misbehaving relay is detected by using the maximum a posteriori (MAP) detection rule which is optimal in the sense of minimizing the probability of incorrect decision (false alarm and miss detection). The proposed scheme does not require sending extra bits at the source, such as hash function or message authentication check bits, and hence there is no transmission overhead. The side information regarding the presence of forwarding misbehavior is exploited at the decoder to enhance the reliability of decoding. We derive the probability of false alarm and miss detection and the probability of bit error, taking into account the lossy nature of wireless links

    MAC/PHY Co-Design of CSMA Wireless Networks Using Software Radios.

    Full text link
    In the past decade, CSMA-based protocols have spawned numerous network standards (e.g., the WiFi family), and played a key role in improving the ubiquity of wireless networks. However, the rapid evolution of CSMA brings unprecedented challenges, especially the coexistence of different network architectures and communications devices. Meanwhile, many intrinsic limitations of CSMA have been the main obstacle to the performance of its derivatives, such as ZigBee, WiFi, and mesh networks. Most of these problems are observed to root in the abstract interface of the CSMA MAC and PHY layers --- the MAC simply abstracts the advancement of PHY technologies as a change of data rate. Hence, the benefits of new PHY technologies are either not fully exploited, or they even may harm the performance of existing network protocols due to poor interoperability. In this dissertation, we show that a joint design of the MAC/PHY layers can achieve a substantially higher level of capacity, interoperability and energy efficiency than the weakly coupled MAC/PHY design in the current CSMA wireless networks. In the proposed MAC/PHY co-design, the PHY layer exposes more states and capabilities to the MAC, and the MAC performs intelligent adaptation to and control over the PHY layer. We leverage the reconfigurability of software radios to design smart signal processing algorithms that meet the challenge of making PHY capabilities usable by the MAC layer. With the approach of MAC/PHY co-design, we have revisited the primitive operations of CSMA (collision avoidance, carrier signaling, carrier sensing, spectrum access and transmitter cooperation), and overcome its limitations in relay and broadcast applications, coexistence of heterogeneous networks, energy efficiency, coexistence of different spectrum widths, and scalability for MIMO networks. We have validated the feasibility and performance of our design using extensive analysis, simulation and testbed implementation.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/95944/1/xyzhang_1.pd

    Maximizing Expected Achievable Rates for Block-Fading Buffer-Aided Relay Channels

    Full text link
    © 2002-2012 IEEE. In this paper, the long-term average achievable rate over block-fading buffer-aided relay channels is maximized using a hybrid scheme that combines three essential transmission strategies, which are decode-and-forward, compress-and-forward, and direct transmission. The proposed hybrid scheme is dynamically adapted based on the channel state information. The integration and optimization of these three strategies provide a more generic and fundamental solution and give better achievable rates than the known schemes in the literature. Despite the large number of optimization variables, the proposed hybrid scheme can be optimized using simple closed-form formulas that are easy to apply in practical relay systems. This includes adjusting the transmission rate and compression when compress-and-forward is the selected strategy based on the channel conditions. Furthermore, in this paper, the hybrid scheme is applied to three different models of the Gaussian block-fading buffer-aided relay channels, depending on whether the relay is half or full duplex and whether the source and the relay have orthogonal or non-orthogonal channel access. Several numerical examples are provided to demonstrate the achievable rate results and compare them to the upper bounds of the ergodic capacity for each one of the three channel models under consideration

    Efficient Power Allocation Schemes for Hybrid Decode-Amplify-Forward Relay Based Wireless Cooperative Network

    Get PDF
    Cooperative communication in various wireless domains, such as cellular networks, sensor networks and wireless ad hoc networks, has gained significant interest recently. In cooperative network, relays between the source and the destination, form a virtual MIMO that creates spatial diversity at the destination, which overcomes the fading effect of wireless channels. Such relay assisted schemes have potential to increase the channel capacity and network coverage. Most current research on cooperative communication are focused broadly on efficient protocol design and analysis, resource allocation, relay selection and cross layer optimization. The first part of this research aims at introducing hybrid decode-amplify-forward (HDAF) relaying in a distributed Alamouti coded cooperative network. Performance of such adaptive relaying scheme in terms of symbol error rate (SER), outage probability and average channel capacity is derived theoretically and verified through simulation based study. This work is further extended to a generalized multi HDAF relaying cooperative frame work. Various efficient power allocation schemes such as maximized channel capacity based, minimized SER based and total power minimization based are proposed and their superiority in performance over the existing equal power allocation scheme is demonstrated in the simulation results. Due to the broadcast nature of wireless transmission, information privacy in wireless networks becomes a critical issue. In the context of physical layer security, the role of multi HDAF relaying based cooperative model with control jamming and multiple eavesdroppers is explored in the second part of the research. Performance evaluation parameters such as secrecy rate, secrecy outage and intercept probability are derived theoretically. Further the importance of the proposed power allocation schemes in enhancing the secrecy performance of the network in the presence of multiple eavesdroppers is studied in detail through simulation based study and analysis. For all the proposed power allocation schemes in this research, the optimization problems are defined under total power constraint and are solved using Lagrange multiplier method and also evolutionary algorithms such as Differential evolution and Invasive Weed Optimization are employed. Monte Carlo simulation based study is adopted throughout the research. It is concluded that HDAF relaying based wireless cooperative network with optimal power allocation schemes offers improved and reliable performance compared to conventional amplify forward and decode forward relaying schemes. Above research contributions will be applicable for future generation wireless cooperative networks
    corecore