2 research outputs found

    Evaluation of left ventricular ejection fraction using through-time radial GRAPPA

    Get PDF
    BACKGROUND: The determination of left ventricular ejection fraction using cardiovascular magnetic resonance (CMR) requires a steady cardiac rhythm for electrocardiogram (ECG) gating and multiple breathholds to minimize respiratory motion artifacts, which often leads to scan times of several minutes. The need for gating and breathholding can be eliminated by employing real-time CMR methods such as through-time radial GRAPPA. The aim of this study is to compare left ventricular cardiac functional parameters obtained using current gold-standard breathhold ECG-gated functional scans with non-gated free-breathing real-time imaging using radial GRAPPA, and to determine whether scan time or the occurrence of artifacts are reduced when using this real-time approach. METHODS: 63 patients were scanned on a 1.5T CMR scanner using both the standard cardiac functional examination with gating and breathholding and the real-time method. Total scan durations were noted. Through-time radial GRAPPA was employed to reconstruct images from the highly accelerated real-time data. The blood volume in the left ventricle was assessed to determine the end systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) for both methods, and images were rated for the presence of artifacts and quality of specific image features by two cardiac readers. Linear regression analysis, Bland-Altman plots and two-sided t-tests were performed to compare the quantitative parameters. A two-sample t-test was performed to compare the scan durations, and a two-sample test of proportion was used to analyze the presence of artifacts. For the reviewers´ ratings the Wilcoxon test for the equality of the scores’ distributions was employed. RESULTS: The differences in EF, EDV, and ESV between the gold-standard and real-time methods were not statistically significant (p-values of 0.77, 0.82, and 0.97, respectively). Additionally, the scan time was significantly shorter for the real-time data collection (p<0.001) and fewer artifacts were reported in the real-time images (p<0.01). In the qualitative image analysis, reviewers marginally preferred the standard images although some features including cardiac motion were equivalently rated. CONCLUSION: Real-time functional CMR with through-time radial GRAPPA performed without ECG-gating under free-breathing can be considered as an alternative to gold-standard breathhold cine imaging for the evaluation of ejection fraction in patients

    SNR enhancement of highly-accelerated real-time cardiac MRI acquisitions based on non-local means algorithm

    No full text
    Real-time cardiac MRI appears as a promising technique to evaluate the mechanical function of the heart. However, ultra-fast MRI acquisitions come with an important signal-to-noise ratio (SNR) penalty, which drastically reduces the image quality. Hence, a real-time denoising approach would be desirable for SNR amelioration. In the clinical context of cardiac dysfunction assessment, long acquisitions are required and for most patients the acquisition takes place with free breathing. Hence, it is necessary to compensate respiratory motion in real-time. In this article, a real-time and interactive method for sequential registration and denoising of real-time MR cardiac images is presented. The method has been experimented on 60 fast MRI acquisitions in five healthy volunteers and five patients. These experiments assessed the feasibility of the method in a real-time context
    corecore