514 research outputs found

    Link Quality Control Mechanism for Selective and Opportunistic AF Relaying in Cooperative ARQs: A MLSD Perspective

    Full text link
    Incorporating relaying techniques into Automatic Repeat reQuest (ARQ) mechanisms gives a general impression of diversity and throughput enhancements. Allowing overhearing among multiple relays is also a known approach to increase the number of participating relays in ARQs. However, when opportunistic amplify-and-forward (AF) relaying is applied to cooperative ARQs, the system design becomes nontrivial and even involved. Based on outage analysis, the spatial and temporal diversities are first found sensitive to the received signal qualities of relays, and a link quality control mechanism is then developed to prescreen candidate relays in order to explore the diversity of cooperative ARQs with a selective and opportunistic AF (SOAF) relaying method. According to the analysis, the temporal and spatial diversities can be fully exploited if proper thresholds are set for each hop along the relaying routes. The SOAF relaying method is further examined from a packet delivery viewpoint. By the principle of the maximum likelihood sequence detection (MLSD), sufficient conditions on the link quality are established for the proposed SOAF-relaying-based ARQ scheme to attain its potential diversity order in the packet error rates (PERs) of MLSD. The conditions depend on the minimum codeword distance and the average signal-to-noise ratio (SNR). Furthermore, from a heuristic viewpoint, we also develop a threshold searching algorithm for the proposed SOAF relaying and link quality method to exploit both the diversity and the SNR gains in PER. The effectiveness of the proposed thresholding mechanism is verified via simulations with trellis codes.Comment: This paper has been withdrawn by the authors due to an improper proof for Theorem 2. To avoid a misleading understanding, we thus decide to withdraw this pape

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Wireless Energy Harvesting with Amplify-and-Forward Relaying and Link Adaptation under Imperfect Feedback Channel

    Get PDF
    Energy harvesting is an alternative approach to extend the lifetime of wireless communications and decrease energy consumption, which results in fewer carbon emissions from wireless networks. In this study, adaptive modulation with EH relay is proposed. A power splitting mechanism for EH relay is used. The relay harvests energy from the source and forwards the information to the destination. A genetic algorithm (GA) is applied for the optimisation of the power splitting ratio at the relays. Two scenarios are considered namely, perfect and imperfect feedback channels. Results show that the spectral efficiency (SE) degradation, which is due to an imperfect feedback channel, was approximately 14% for conventional relays. The use of energy harvesting results in a degradation in the performance of SE of approximately 19% in case of a perfect feedback channel. Finally, an increase in the number of energy harvesting relays enhances the SE by 22%

    I/Q Imbalance and Imperfect SIC on Two-way Relay NOMA Systems

    Get PDF
    Abstract: Non-orthogonal multiple access (NOMA) system can meet the demands of ultra-high data rate, ultra-low latency, ultra-high reliability and massive connectivity of user devices (UE). However, the performance of the NOMA system may be deteriorated by the hardware impairments. In this paper, the joint effects of in-phase and quadrature-phase imbalance (IQI) and imperfect successive interference cancellation (ipSIC) on the performance of two-way relay cooperative NOMA (TWR C-NOMA) networks over the Rician fading channels are studied, where two users exchange information via a decode-and-forward (DF) relay. In order to evaluate the performance of the considered network, analytical expressions for the outage probability of the two users, as well as the overall system throughput are derived. To obtain more insights, the asymptotic outage performance in the high signal-to-noise ratio (SNR) region and the diversity order are analysed and discussed. Throughout the paper, Monte Carlo simulations are provided to verify the accuracy of our analysis. The results show that IQI and ipSIC have significant deleterious effects on the outage performance. It is also demonstrated that the outage behaviours of the conventional OMA approach are worse than those of NOMA. In addition, it is found that residual interference signals (IS) can result in error floors for the outage probability and zero diversity orders. Finally, the system throughput can be limited by IQI and ipSIC, and the system throughput converges to a fixed constant in the high SNR region

    Cooperative Transmission Techniques in Wireless Communication Networks

    Get PDF
    Cooperative communication networks have received significant interests from both academia and industry in the past decade due to its ability to provide spatial diversity without the need of implementing multiple transmit and/or receive antennas at the end-user terminals. These new communication networks have inspired novel ideas and approaches to find out what and how performance improvement can be provided with cooperative communications. The objective of this thesis is to design and analyze various cooperative transmission techniques under the two common relaying signal processing methods, namely decode-and-forward (DF) and amplify-and-forward (AF). For the DF method, the thesis focuses on providing performance improvement by mitigating detection errors at the relay(s). In particular, the relaying action is implemented adaptively to reduce the phenomenon of error propagation: whether or not a relay’s decision to retransmit depends on its decision variable and a predefined threshold. First, under the scenario that unequal error protection is employed to transmit different information classes at the source, a relaying protocol in a singlerelay network is proposed and its error performance is evaluated. It is shown that by setting the optimal signal-to-noise ratio (SNR) thresholds at the relay for different information classes, the overall error performance can be significantly improved. Second, for multiple-relay networks, a relay selection protocol, also based on SNR thresholds, is proposed and the optimal thresholds are also provided. Third, an adaptive relaying protocol and a low-complexity receiver are proposed when binary frequency-shift-keying (FSK) modulation is employed and neither the receiver nor the transmitter knows the fading coefficients. It is demonstrated that large performance improvements are possible when the optimal thresholds are implemented at the relays and destination. Finally, under the scenario that there is information feedback from the destination to the relays, a novel protocol is developed to achieve the maximum transmission throughput over a multiple-relay network while the bit-error rate satisfies a given constraint. With the AF method, the thesis examines a fixed-gain multiple-relay network in which the channels are temporally-correlated Rayleigh flat fading. Developed is a general framework for maximum-ratio-combining detection when M-FSK modulation is used and no channel state information is available at the destination. In particular, an upper-bound expression on the system’s error performance is derived and used to verify that the system achieves the maximal diversity order. Simulation results demonstrate that the proposed scheme outperforms the existing schemes for the multiple-relay network under consideration

    Bringing Mobile Relays for Wireless Access Networks into Practice - Learning When to Relay

    Get PDF
    Adding fixed relay nodes (RNs) to wireless access networks requires additional costly infrastructure. Utilising mobile RNs, that is, user terminals that relay signals intended for other users being the destination nodes (DNs), is an appealing cost-effective solution. However, the changing node topology increases the required signalling for relay selection (RS). The signalling overhead consists of control signals that need to be exchanged between the RNs, the source node (SN) and the DN, to achieve the objectives of cooperation. To reduce signalling without penalising performance, the authors propose a three-step approach exploiting statistical knowledge on the likelihood of attaining performance gains by using RNs as a function of the node position (position of DNs and RNs). In the first step only the cell DNs that are likely to gain from relaying request the assistance of RNs. In the second step, for each DN that requests relaying, a limited set of RN candidates is formed. These decisions are made with the aid of thresholds applied to inter-node distances whose values are based on the acquired statistical knowledge. In the final step, RN candidates feed back the relevant channel state information to the SN that performs RS. Furthermore, the authors investigate the attained gains from mobile RNs as a function of the fading environment and they show that mobile RNs can help overcome the effects of severe fading

    Efficient Transmission Techniques in Cooperative Networks: Forwarding Strategies and Distributed Coding Schemes

    Get PDF
    This dissertation focuses on transmission and estimation schemes in wireless relay network, which involves a set of source nodes, a set of destination nodes, and a set of nodes helps communication between source nodes and destination nodes, called relay nodes. It is noted that the overall performance of the wireless relay systems would be impacted by the relay methods adopted by relay nodes. In this dissertation, efficient forwarding strategies and channel coding involved relaying schemes in various relay network topology are studied.First we study a simple structure of relay systems, with one source, one destination and one relay node. By exploiting “analog codes” -- a special class of error correction codes that can directly encode and protect real-valued data, a soft forwarding strategy –“analog-encode-forward (AEF)”scheme is proposed. The relay node first soft-decodes the packet from the source, then re-encodes this soft decoder output (Log Likelihood Ratio) using an appropriate analog code, and forwards it to the destination. At the receiver, both a maximum-likelihood (ML) decoder and a maximum a posterior (MAP) decoder are specially designed for the AEF scheme.The work is then extended to parallel relay networks, which is consisted of one source, one destination and multiple relay nodes. The first question confronted with us is which kind of soft information to be relayed at the relay nodes. We analyze a set of prevailing soft information for relaying considered by researchers in this field. A truncated LLR is proved to be the best choice, we thus derive another soft forwarding strategy – “Z” forwarding strategy. The main parameter effecting the overall performance in this scheme is the threshold selected to cut the LLR information. We analyze the threshold selection at the relay nodes, and derive the exact ML estimation at the destination node. To circumvent the catastrophic error propagation in digital distributed coding scheme, a distributed soft coding scheme is proposed for the parallel relay networks. The key idea is the exploitation of a rate-1 soft convolutional encoder at each of the parallel relays, to collaboratively form a simple but powerful distributed analog coding scheme. Because of the linearity of the truncated LLR information, a nearly optimal ML decoder is derived for the distributed coding scheme. In the last part, a cooperative transmission scheme for a multi-source single-destination system through superposition modulation is investigated. The source nodes take turns to transmit, and each time, a source “overlays” its new data together with (some or all of) what it overhears from its partner(s), in a way similar to French-braiding the hair. We introduce two subclasses of braid coding, the nonregenerative and the regenerative cases, and, using the pairwise error probability (PEP) as a figure of merit, derive the optimal weight parameters for each one. By exploiting the structure relevance of braid codes with trellis codes, we propose a Viterbi maximum-likelihood (ML) decoding method of linear-complexity for the regenerative case. We also present a soft-iterative joint channel-network decoding. The overall decoding process is divided into the forward message passing and the backward message passing, which makes effective use of the available reliability information from all the received signals. We show that the proposed “braid coding” cooperative scheme benefits not only from the cooperative diversity but also from the bit error rate (BER) performance gain

    Power allocation in wireless multi-user relay networks

    Get PDF
    In this paper, we consider an amplify-and-forward wireless relay system where multiple source nodes communicate with their corresponding destination nodes with the help of relay nodes. Conventionally, each relay equally distributes the available resources to its relayed sources. This approach is clearly sub-optimal since each user experiences dissimilar channel conditions, and thus, demands different amount of allocated resources to meet its quality-of-service (QoS) request. Therefore, this paper presents novel power allocation schemes to i) maximize the minimum signal-to-noise ratio among all users; ii) minimize the maximum transmit power over all sources; iii) maximize the network throughput. Moreover, due to limited power, it may be impossible to satisfy the QoS requirement for every user. Consequently, an admission control algorithm should first be carried out to maximize the number of users possibly served. Then, optimal power allocation is performed. Although the joint optimal admission control and power allocation problem is combinatorially hard, we develop an effective heuristic algorithm with significantly reduced complexity. Even though theoretically sub-optimal, it performs remarkably well. The proposed power allocation problems are formulated using geometric programming (GP), a well-studied class of nonlinear and nonconvex optimization. Since a GP problem is readily transformed into an equivalent convex optimization problem, optimal solution can be obtained efficiently. Numerical results demonstrate the effectiveness of our proposed approach
    corecore