12 research outputs found

    Geolocating Low-Earth-Orbit satellite data from next-generation millimeter-wave radiometers using natural targets

    Get PDF
    The main goal of this work is to perform the geolocation error assessment of the channel imagery at 183.31 GHz of the Special Sensor Microwave Imager/Sounder (SSMIS). The frequency around 183.31 GHz still represents the highest channel frequency of current spaceborne microwave and millimeter-wave radiometers. The latter will be extended to frequencies up to 664 GHz, as in the case of EUMETSAT Ice Cloud Imager (ICI). This use of submillimeter observations unfortunately prevents a straightforward geolocation error assessment using landmark-based techniques. This work uses SSMIS data at 183.31 GHz as a submillimeter proxy to identify the most suitable targets for geolocation error validation in very dry atmospheric conditions, as suggested by radiative transfer modeling. Using a yearly SSMIS dataset, 3 candidates landmark targets are selected: i) high-altitude lakes and high-latitude bays using a coastline reference database; ii) Antarctic ice shelves and Arctic shorelines using coastlines derived from Sentinel-1 Synthetic Aperture Radar (SAR) imagery; iii) high altitude mountains using digital elevation model as reference. Data processing is carried out by using spatial cross-correlation methods in the spatial frequency domain and performing a numerical sensitivity analysis to contour displacement. Cloud masking, based on a fuzzy-logic approach, is applied to automatically selected clear-air days. Results show that the average geolocation error is about 6.2 km for mountainous lakes and sea bays and 5.4 km for ice shelves, respectively, with a standard deviation of about 2.7 and 2.0 km. Results are in line with SSMIS previous estimates, whereas annual clear-air days are about 10% for mountainous lakes and sea bays and 18% for ice shelves. The second goal of this work is to investigate ICI channels, focusing on 243 GHz at horizontal polarization (ICI-4). The results of the simulations using radiative transfer model and artificial neural network (ANN) confirm that ICI-4 will be the best candidate to validate the geolocation of the future ICI radiometer. At 243 GHz the atmosphere is less opaque and the surface could be more visible with respect to other frequencies. This work proposes an artificial neural network to reconstruct the 243 GHz starting from real data at 150 GHz and 183 GHz. ANN provides an average value of about 5.8 km with a standard deviation of about 2.7 km. These numbers are in line with those obtained for 183 GHz, but at 243 GHz the number of images that contains visible surface targets are much more with respect to 183 GHz

    CIRA annual report FY 2016/2017

    Get PDF
    Reporting period April 1, 2016-March 31, 2017

    Research theme reports from April 1, 2019 - March 31, 2020

    Get PDF

    CIRA annual report FY 2017/2018

    Get PDF
    Reporting period April 1, 2017-March 31, 2018

    A 20-YEAR CLIMATOLOGY OF GLOBAL ATMOSPHERIC METHANE FROM HYPERSPECTRAL THERMAL INFRARED SOUNDERS WITH SOME APPLICATIONS

    Get PDF
    Atmospheric Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2), and accounts for approximately 20% of the global warming produced by all well-mixed greenhouse gases. Thus, its spatiotemporal distributions and relevant long-term trends are critical to understanding the sources, sinks, and global budget of atmospheric composition, as well as the associated climate impacts. The current suite of hyperspectral thermal infrared sounders has provided continuous global methane data records since 2002, starting with the Atmospheric Infrared Sounder (AIRS) onboard the NASA EOS/Aqua satellite launched on 2 May 2002. The Cross-track Infrared Sounder (CrIS) was launched onboard the Suomi National Polar Orbiting Partnership (SNPP) on 28 October 2011 and then on NOAA-20 on 18 November 2017. The Infrared Atmospheric Sounding Interferometer (IASI) was launched onboard the EUMETSAT MetOp-A on 19 October 2006, followed by MetOp-B on 17 September 2012, then Metop-C on 7 November 2018. In this study, nearly two decades of global CH4 concentrations retrieved from the AIRS and CrIS sensors were analyzed. Results indicate that the global mid-upper tropospheric CH4 concentrations (centered around 400 hPa) increased significantly from 2003 to 2020, i.e., with an annual average of ~1754 ppbv in 2003 and ~1839 ppbv in 2020. The total increase is approximately 85 ppbv representing a +4.8% change in 18 years. More importantly, the rate of increase was derived using satellite measurements and shown to be consistent with the rate of increase previously reported only from in-situ observational measurements. It further confirmed that there was a steady increase starting in 2007 that became stronger since 2014, as also reported from the in-situ observations. In addition, comparisons of the methane retrieved from the AIRS and CrIS against in situ measurements from NOAA Global Monitoring Laboratory (GML) were conducted. One of the key findings of this comparative study is that there are phase shifts in the seasonal cycles between satellite thermal infrared measurements and ground measurements, especially in the middle to high latitudes in the northern hemisphere. Through this, an issue common in the hyperspectral thermal sensor retrievals were discovered that was unknown previously and offered potential solutions. We also conducted research on some applications of the retrieval products in monitoring the changes of CH4 over the selected regions (the Arctic and South America). Detailed analyses based on local geographic changes related to CH4 concentration increases were discussed. The results of this study concluded that while the atmospheric CH4 concentration over the Arctic region has been increasing since the early 2000s, there were no catastrophic sudden jumps during the period of 2008-2012, as indicated by the earlier studies using pre-validated retrieval products. From our study of CH4 climatology using hyperspectral infrared sounders, it has been proved that the CH4 from hyperspectral sounders provide valuable information on CH4 for the mid-upper troposphere and lower stratosphere. Future approaches are suggested that include: 1) Utilizing extended data records for CH4 monitoring using AIRS, CrIS, and other potential new generation hyperspectral infrared sensors; 2). Improving the algorithms for trace gas retrievals; and 3). Enhancing the capacity to detect CH4 changes and anomalies with radiance signals from hyperspectral infrared sounders

    CIRA annual report FY 2015/2016

    Get PDF
    Reporting period April 1, 2015-March 31, 2016

    Evaluation of the Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) Pixel-level Retrieval Algorithm for Single-layer Water Clouds

    Get PDF
    Evaluation of the Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) product was accomplished. CBH is an important factor for aviation, but a lack of coverage for ground-based retrieval is a significant limitation. Space-based retrieval is essential; therefore, the VIIRS CBH pixel-level retrieval algorithm was assessed for single-layer water clouds. Accurate (truth) measurements were needed not only for the CBH product, but also for VIIRS cloud optical thickness (COT), effective particle size (EPS), and cloud top height (CTH). Data from Atmospheric Radiation Measurement (ARM) sites were used, with VIIRS-ARM matchups created from June 2013 through October 2015 for four locations. After initial CBH results were large and highly variable, the VIIRS CTH product was replaced with the ARM (truth) CTH product. This substantially reduced variability and errors in the VIIRS CBH products, demonstrating that the CBH algorithm is fundamentally sound. Thus, future research is needed to reduce errors in the VIIRS CTH products in order to ensure the CBH products are suitable for aviation support

    CIRA annual report FY 2014/2015

    Get PDF
    Reporting period July 1, 2014-March 31, 2015

    CIRA annual report FY 2013/2014

    Get PDF

    Atmospheric Research 2014 Technical Highlights

    Get PDF
    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the Earth Sciences Division in atmospheric science research. Figure 1.1 shows the 20-year record of peer-reviewed publications and proposals among the various Laboratories. This data shows that the scientific work being conducted in the Laboratories is competitive with the work being done elsewhere in universities and other government agencies. The office of Deputy Director for Atmospheric Research will strive to maintain this record by rigorously monitoring and promoting quality while emphasizing coordination and integration among atmospheric disciplines. Also, an appropriate balance will be maintained between the scientists' responsibility for large collaborative projects and missions and their need to carry out active science research as a principal investigator. This balance allows members of the Laboratories to improve their scientific credentials, and develop leadership potentials. Interdisciplinary research is carried out in collaboration with other laboratories and research groups within the Earth Sciences Division, across the Sciences and Exploration Directorate, and with partners in universities and other government agencies. Members of the Laboratories interact with the general public to support a wide range of interests in the atmospheric sciences. Among other activities, the Laboratories raise the public's awareness of atmospheric science by presenting public lectures and demonstrations, by making scientific data available to wide audiences, by teaching, and by mentoring students and teachers. The Atmosphere Laboratories make substantial efforts to attract and recruit new scientists to the various areas of atmospheric research. We strongly encourage the establishment of partnerships with Federal and state agencies that have operational responsibilities to promote the societal application of our science products. This report describes our role in NASA's mission, provides highlights of our research scope and activities, and summarizes our scientists' major accomplishments during calendar year 2014. The composition of the organization is shown in Figure 1.2 for each code. This report is published in a printed version with an electronic version on our atmospheres Web site, http://atmospheres.gsfc.nasa.gov/
    corecore