200 research outputs found

    PrIC3: Property Directed Reachability for MDPs

    Get PDF
    IC3 has been a leap forward in symbolic model checking. This paper proposes PrIC3 (pronounced pricy-three), a conservative extension of IC3 to symbolic model checking of MDPs. Our main focus is to develop the theory underlying PrIC3. Alongside, we present a first implementation of PrIC3 including the key ingredients from IC3 such as generalization, repushing, and propagation

    Counterexample Generation for Infinite-State Chemical Reaction Networks

    Full text link
    Counterexample generation is an indispensable part of model checking process. In stochastic model checking, counterexample generation is a challenging problem as it is not enough to find a single trace that violates the given property. Instead, a potentially large set of traces with enough probability to violate the property needs to be found. This paper considers counterexample generation for chemical reaction network (CRN) models with potentially infinite state space. A method based on bounded model checking using SMT solving is developed for counterexample generation for CRNs. It intends to find a small set of property violating paths of a given model such that they collectively have a total probability that is above a given threshold. A unique challenge is due to the highly connected state space of CRNs where a counterexample is only a tiny subset of all property violating paths. To address such challenges, this paper presents a number of optimizations including a divide-and-conquer technique to scale up the counterexample generation method for large CRN models. This paper reports results from experiments on a number of infinite-state CRN models

    Safety-Aware Apprenticeship Learning

    Full text link
    Apprenticeship learning (AL) is a kind of Learning from Demonstration techniques where the reward function of a Markov Decision Process (MDP) is unknown to the learning agent and the agent has to derive a good policy by observing an expert's demonstrations. In this paper, we study the problem of how to make AL algorithms inherently safe while still meeting its learning objective. We consider a setting where the unknown reward function is assumed to be a linear combination of a set of state features, and the safety property is specified in Probabilistic Computation Tree Logic (PCTL). By embedding probabilistic model checking inside AL, we propose a novel counterexample-guided approach that can ensure safety while retaining performance of the learnt policy. We demonstrate the effectiveness of our approach on several challenging AL scenarios where safety is essential.Comment: Accepted by International Conference on Computer Aided Verification (CAV) 201

    Parameter Synthesis for Markov Models

    Full text link
    Markov chain analysis is a key technique in reliability engineering. A practical obstacle is that all probabilities in Markov models need to be known. However, system quantities such as failure rates or packet loss ratios, etc. are often not---or only partially---known. This motivates considering parametric models with transitions labeled with functions over parameters. Whereas traditional Markov chain analysis evaluates a reliability metric for a single, fixed set of probabilities, analysing parametric Markov models focuses on synthesising parameter values that establish a given reliability or performance specification φ\varphi. Examples are: what component failure rates ensure the probability of a system breakdown to be below 0.00000001?, or which failure rates maximise reliability? This paper presents various analysis algorithms for parametric Markov chains and Markov decision processes. We focus on three problems: (a) do all parameter values within a given region satisfy φ\varphi?, (b) which regions satisfy φ\varphi and which ones do not?, and (c) an approximate version of (b) focusing on covering a large fraction of all possible parameter values. We give a detailed account of the various algorithms, present a software tool realising these techniques, and report on an extensive experimental evaluation on benchmarks that span a wide range of applications.Comment: 38 page

    Shepherding Hordes of Markov Chains

    Full text link
    This paper considers large families of Markov chains (MCs) that are defined over a set of parameters with finite discrete domains. Such families occur in software product lines, planning under partial observability, and sketching of probabilistic programs. Simple questions, like `does at least one family member satisfy a property?', are NP-hard. We tackle two problems: distinguish family members that satisfy a given quantitative property from those that do not, and determine a family member that satisfies the property optimally, i.e., with the highest probability or reward. We show that combining two well-known techniques, MDP model checking and abstraction refinement, mitigates the computational complexity. Experiments on a broad set of benchmarks show that in many situations, our approach is able to handle families of millions of MCs, providing superior scalability compared to existing solutions.Comment: Full version of TACAS'19 submissio
    corecore