1,335 research outputs found

    Metamodel Instance Generation: A systematic literature review

    Get PDF
    Modelling and thus metamodelling have become increasingly important in Software Engineering through the use of Model Driven Engineering. In this paper we present a systematic literature review of instance generation techniques for metamodels, i.e. the process of automatically generating models from a given metamodel. We start by presenting a set of research questions that our review is intended to answer. We then identify the main topics that are related to metamodel instance generation techniques, and use these to initiate our literature search. This search resulted in the identification of 34 key papers in the area, and each of these is reviewed here and discussed in detail. The outcome is that we are able to identify a knowledge gap in this field, and we offer suggestions as to some potential directions for future research.Comment: 25 page

    BEval: A Plug-in to Extend Atelier B with Current Verification Technologies

    Full text link
    This paper presents BEval, an extension of Atelier B to improve automation in the verification activities in the B method or Event-B. It combines a tool for managing and verifying software projects (Atelier B) and a model checker/animator (ProB) so that the verification conditions generated in the former are evaluated with the latter. In our experiments, the two main verification strategies (manual and automatic) showed significant improvement as ProB's evaluator proves complementary to Atelier B built-in provers. We conducted experiments with the B model of a micro-controller instruction set; several verification conditions, that we were not able to discharge automatically or manually with AtelierB's provers, were automatically verified using BEval.Comment: In Proceedings LAFM 2013, arXiv:1401.056

    BeSpaceD: Towards a Tool Framework and Methodology for the Specification and Verification of Spatial Behavior of Distributed Software Component Systems

    Full text link
    In this report, we present work towards a framework for modeling and checking behavior of spatially distributed component systems. Design goals of our framework are the ability to model spatial behavior in a component oriented, simple and intuitive way, the possibility to automatically analyse and verify systems and integration possibilities with other modeling and verification tools. We present examples and the verification steps necessary to prove properties such as range coverage or the absence of collisions between components and technical details

    CASP Solutions for Planning in Hybrid Domains

    Full text link
    CASP is an extension of ASP that allows for numerical constraints to be added in the rules. PDDL+ is an extension of the PDDL standard language of automated planning for modeling mixed discrete-continuous dynamics. In this paper, we present CASP solutions for dealing with PDDL+ problems, i.e., encoding from PDDL+ to CASP, and extensions to the algorithm of the EZCSP CASP solver in order to solve CASP programs arising from PDDL+ domains. An experimental analysis, performed on well-known linear and non-linear variants of PDDL+ domains, involving various configurations of the EZCSP solver, other CASP solvers, and PDDL+ planners, shows the viability of our solution.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Deciding the Satisfiability of MITL Specifications

    Get PDF
    In this paper we present a satisfiability-preserving reduction from MITL interpreted over finitely-variable continuous behaviors to Constraint LTL over clocks, a variant of CLTL that is decidable, and for which an SMT-based bounded satisfiability checker is available. The result is a new complete and effective decision procedure for MITL. Although decision procedures for MITL already exist, the automata-based techniques they employ appear to be very difficult to realize in practice, and, to the best of our knowledge, no implementation currently exists for them. A prototype tool for MITL based on the encoding presented here has, instead, been implemented and is publicly available.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    • …
    corecore