114 research outputs found
Técnicas de detección y caracterización de la materia interplanetaria próxima a la Tierra desde observatorios en tierra
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Astrofísica y Ciencias de la Atmósfera, leída el 05/06/2017Interplanetary matter covers a wide range of mass and size in the Universe, from micrometric dust to multi-kilometre asteroids. This matter plays countless roles in planetary sciences. Dust fills the space in the Solar System, but also in a myriad of exoplanetary systems. Indeed, the interplanetary dust usually outshines the planets in infrared and these hot debris disks have already been observed in several exoplanetary systems. The near-Earth interplanetary matter is also relevant for Earth sciences and space exploration. Extraterrestrial dust plays several roles in the upper atmosphere. Moreover the asteroids are a threat for humankind due to the energy they release in the case of impact against the planet. Asteroids larger than 1 km could produce global devastation and 90% of them are already catalogued. Current efforts are focused on the population larger than 140 m, able to produce an impact of regional proportions. Beyond Earth’s atmosphere, these bodies pose a hazard to spacecraft, especially the small particles that are the most numerous but still carry enough energy to jeopardise their systems. This dissertation undertakes the research of the interplanetary matter near the Earth using two different observational approaches. The first one is based on the detection of the sunlight reflected by the bodies. Individuals bodies can be observed with the use of telescopes, they are the asteroids. For objects close to the Earth the accessible range in size is wider, down to the decametre size and consequently this population are a probe to general population of asteroids in the Solar System. Especially if we consider that recent works suggest that objects larger and smaller than 200 m could be two different populations, being the smaller monolithic bodies while larger ones are more likely rubble piles. And we only have access to the smaller population if they come close enough to the be observable. The detection and characterisation of these nearby population require networks of medium-sized telescopes to survey and track them. We design a robotic system (the TBT telescopes) for the European Space Agency as a prototype for a future network. The first unit is already installed in Spain and we present the results of the commissioning. Additionally we evaluate the expected performance of such an instrument using a simulation with a synthetic population. We consider that the system designed is a powerful instrument for nearby asteroid discovery and tracking. It is based on commercial components, and therefore ready for a scalable implementation in a global network...Bajo el término de materia interplanetaria se engloban objetos en un gran rango de masas y tamaños en el Universo, desde el polvo micrométrico hasta los asteroides de centenares de kilómetros de diámetro. Esta materia toma parte de innumerables procesos en las ciencias planetarias. Además el polvo no sólo está presente en el espacio del Sistema Solar, sino también en una infinidad de sistemas extrasolares. Más aún, el polvo interplanetario es más brillante en el infrarrojo que los propios planetas y ya se han observado muchos de estos discos circunestelares de polvo caliente. La materia interplanetaria en las cercanías de nuestro planeta es también relevante para el estudio de las ciencias de la Tierra y en la exploración espacial. El polvo extraterrestre participa en muchos procesos que tienen lugar en las capas más altas de la atmósfera. Asimismo los asteroides son una amenaza para la humanidad debido a la energía que pueden liberar en caso de impacto contra la Tierra. Se considera que los asteroides mayores de 1 km podrían provocar una catástrofe de proporciones globales y por ello el 90% de ellos ya han sido identificados. Actualmente los esfuerzos se centran en los objetos mayores de 140 m, con consecuencias sólo a nivel regional en caso de colisión. Fuera de la atmósfera terrestre estos cuerpos suponen un peligro para las naves espaciales, especialmente las partículas pequeñas que son las más numerosas y que pese a ello transportan energía suficiente como para comprometer su funcionamiento. Esta tesis estudia la materia interplanetaria desde dos aproximaciones observacionales distintas. Por un lado se observa la luz solar reflejada por estos cuerpos. En este caso encontramos a los asteroides, cuerpos que se pueden observar con telescopios hasta cierto tamaño. Para la población de objetos próximos a la Tierra el rango de tamaños que podemos observar es mayor, hasta tamaños de apenas decenas de metros. Por ello esta población se considera como una muestra relevante a la hora de estudiar la población general de asteroides en el Sistema Solar. Especialmente cuando estudios recientes afirman que puede haber una diferencia estructural entre las poblaciones con diámetro mayor y menor a unos 200 m, donde los pequeños son objetos monolíticos mientras que los grandes son agregados de objetos. Los objetos menores sólo son accesibles a los instrumentos si se aproximan lo suficiente a la Tierra. La detección y caracterización de estos objetos próximos requieren redes de telescopios de tamaño moderado. En este trabajo presentamos el diseño de un sistema robótico (los telescopios TBT) para la Agencia Espacial Europea (ESA), como prototipos de una red futura. El primero de ellos se encuentra ya instalado en España y se incluyen los resultados del comisionado. Por otro lado hemos analizado el rendimiento que se espera de ellos con ayuda de una simulación de las observaciones de una población sintética de objetos. Consideramos que el sistema diseñado es una herramienta potente para el descubrimiento y seguimiento de estos objetos próximos a la Tierra. Es un sistema basado en componentes comerciales y que por tanto se puede replicar para desarrollar una red global...Depto. de Física de la Tierra y AstrofísicaFac. de Ciencias FísicasTRUEunpu
Techniques for near-Earth interplanetary matter detection and characterisation from optical ground-based observatories
Interplanetary matter covers a wide range of mass and size in the Universe, from micrometric dust to multi-kilometre asteroids. This matter plays countless roles in planetary sciences. Dust fills the space in the Solar System, but also in a myriad of exoplanetary systems. Indeed, the interplanetary dust usually outshines the planets in infrared and these hot debris disks have already been observed in several exoplanetary systems. The near-Earth interplanetary matter is also relevant for Earth sciences and space exploration. Extraterrestrial dust plays several roles in the upper atmosphere. Moreover the asteroids are a threat for humankind due to the energy they release in the case of impact against the planet. Asteroids larger than 1 km could produce global devastation and 90% of them are already catalogued. Current efforts are focused on the population larger than 140 m, able to produce an impact of regional proportions. Beyond Earth’s atmosphere, these bodies pose a hazard to spacecraft, especially the small particles that are the most numerous but still carry enough energy to jeopardise their systems. This dissertation undertakes the research of the interplanetary matter near the Earth using two different observational approaches. The first one is based on the detection of the sunlight reflected by the bodies. Individuals bodies can be observed with the use of telescopes, they are the asteroids. For objects close to the Earth the accessible range in size is wider, down to the decametre size and consequently this population are a probe to general population of asteroids in the Solar System. Especially if we consider that recent works suggest that objects larger and smaller than 200 m could be two different populations, being the smaller monolithic bodies while larger ones are more likely rubble piles. And we only have access to the smaller population if they come close enough to the be observable. The detection and characterisation of these nearby population require networks of medium-sized telescopes to survey and track them. We design a robotic system (the TBT telescopes) for the European Space Agency as a prototype for a future network. The first unit is already installed in Spain and we present the results of the commissioning. Additionally we evaluate the expected performance of such an instrument using a simulation with a synthetic population. We consider that the system designed is a powerful instrument for nearby asteroid discovery and tracking. It is based on commercial components, and therefore ready for a scalable implementation in a global network..
Annual Meeting of the Lunar Exploration Analysis Group : November 1-3, 2016, Columbia, Maryland
The meeting goals are three-fold: 1. Integrate the perspectives and interests of the different stakeholders (science, engineering, government, and private sector) to explore common goals of lunar exploration. 2. Use the results of recent and ongoing missions to examine how science enables exploration and exploration enables science. 3. Provide a forum for community updates and input into the issues that affect lunar science and exploration.NASA Lunar Exploration Analysis Group (LEAG)
Lunar and Planetary Institute (LPI)
Universities Space Research Association (USRA)
National Aeronautics and Space Administration (NASA)
NASA Solar System Exploration Research Virtual Institute (SSERVI)Organizing Committee, Clive Neal, Convener, University of Notre Dame, Stephen Mackwell, Convener,
Universities Space Research Associatio
The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019 edition
(Abridged) The Maunakea Spectroscopic Explorer (MSE) is an end-to-endscience platform for the design, execution and scientific exploitation of spectroscopic surveys. It will unveil the composition and dynamics of the faint Universe and impact nearly every field of astrophysics across all spatial scales, from individual stars to the largest scale structures in the Universe. Major pillars in the science program for MSE include (i) the ultimate Gaia follow-up facility for understanding the chemistry and dynamics of the distant Milky Way, including the outer disk and faint stellar halo at high spectral resolution (ii) galaxy formation and evolution at cosmic noon, via the type of revolutionary surveys that have occurred in the nearby Universe, but now conducted at the peak of the star formation history of the Universe (iii) derivation of the mass of the neutrino and insights into inflationary physics through a cosmological redshift survey that probes a large volume of theUniverse with a high galaxy density. MSE is positioned to become a critical hub in the emerging international network of front-line astronomical facilities, with scientific capabilities that naturally complement and extend the scientific power of Gaia, the Large SynopticSurvey Telescope, the Square Kilometer Array, Euclid, WFIRST, the 30m telescopes and many more
A Cosmic Quest for New Worlds. Characterising Exoplanet Signals via Radial Velocity and Transit Photometry.
Since the first unambiguous detection of a planet around a Sun-like star, theinterest in the new and exciting field of exoplanets has grown immensely. Newand exciting developments are seen at a pace unparalleled for most subfieldsof astronomy. In this thesis, I describe the two most successful techniques forexoplanet detection and characterisation – transits and radial velocities – andthe challenges commonly encountered in extracting the planets from the data.Transit photometry allows us to measure the planet radius, while radialvelocity measurements give us the planet’s minimum mass. These methods’true strength, however, manifests in their combination as it allows us to estimatethe true mass, which, together with the radius, gives us the planet’s bulkdensity. This is a powerful quantity, which allows us to construct models andmake predictions about the structure and composition of a planet’s interior,as well as its atmosphere. Zeroing in on the latter two is currently one of thebiggest challenges for exoplanet characterisation.I describe the process of detecting a planet in a stellar light curve, andhow transits and radial velocities are modelled together in order to determinethe planet parameters. This is then followed by the ideal theoreticalapproach, which can be used to study a system in practice. However, the currentchallenges in exoplanet characterisation surpass the ideal case, leading usto explore more complex models. I then discuss the biggest nemesis to planetdiscovery, particularly in radial velocity timeseries – stellar activity, and theproblem of its often stochastic manifestation. A special focus is given to onemethod for its mitigation – modelling the radial velocities alongside activityindicators. This is the core concept of multi-dimensional Gaussian processregression, particularly with the quasi-periodic covariance function, which isused in a large part of this work.Finally, the last part if the thesis shows that while the ideal planet case cansometimes be applicable for quiet stars, as is the case of the TOI-2196 system,extending to non-parametric models, such as Gaussian processes, can help usto detect planets in complicated datasets, as demonstrated by the cases of theTOI-1260, TOI-733, TOI-776 and TOI-1416 systems
- …
