17,396 research outputs found

    Low-rank SIFT: An Affine Invariant Feature for Place Recognition

    Full text link
    In this paper, we present a novel affine-invariant feature based on SIFT, leveraging the regular appearance of man-made objects. The feature achieves full affine invariance without needing to simulate over affine parameter space. Low-rank SIFT, as we name the feature, is based on our observation that local tilt, which are caused by changes of camera axis orientation, could be normalized by converting local patches to standard low-rank forms. Rotation, translation and scaling invariance could be achieved in ways similar to SIFT. As an extension of SIFT, our method seeks to add prior to solve the ill-posed affine parameter estimation problem and normalizes them directly, and is applicable to objects with regular structures. Furthermore, owing to recent breakthrough in convex optimization, such parameter could be computed efficiently. We will demonstrate its effectiveness in place recognition as our major application. As extra contributions, we also describe our pipeline of constructing geotagged building database from the ground up, as well as an efficient scheme for automatic feature selection

    A Novel Approach to Face Recognition using Image Segmentation based on SPCA-KNN Method

    Get PDF
    In this paper we propose a novel method for face recognition using hybrid SPCA-KNN (SIFT-PCA-KNN) approach. The proposed method consists of three parts. The first part is based on preprocessing face images using Graph Based algorithm and SIFT (Scale Invariant Feature Transform) descriptor. Graph Based topology is used for matching two face images. In the second part eigen values and eigen vectors are extracted from each input face images. The goal is to extract the important information from the face data, to represent it as a set of new orthogonal variables called principal components. In the final part a nearest neighbor classifier is designed for classifying the face images based on the SPCA-KNN algorithm. The algorithm has been tested on 100 different subjects (15 images for each class). The experimental result shows that the proposed method has a positive effect on overall face recognition performance and outperforms other examined methods

    Robust Object-Based Watermarking Using SURF Feature Matching and DFT Domain

    Get PDF
    In this paper we propose a robust object-based watermarking method, in which the watermark is embedded into the middle frequencies band of the Discrete Fourier Transform (DFT) magnitude of the selected object region, altogether with the Speeded Up Robust Feature (SURF) algorithm to allow the correct watermark detection, even if the watermarked image has been distorted. To recognize the selected object region after geometric distortions, during the embedding process the SURF features are estimated and stored in advance to be used during the detection process. In the detection stage, the SURF features of the distorted image are estimated and match them with the stored ones. From the matching result, SURF features are used to compute the Affine-transformation parameters and the object region is recovered. The quality of the watermarked image is measured using the Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and the Visual Information Fidelity (VIF). The experimental results show the proposed method provides robustness against several geometric distortions, signal processing operations and combined distortions. The receiver operating characteristics (ROC) curves also show the desirable detection performance of the proposed method. The comparison with a previously reported methods based on different techniques is also provided

    Fingerprint Recognition Using Translation Invariant Scattering Network

    Full text link
    Fingerprint recognition has drawn a lot of attention during last decades. Different features and algorithms have been used for fingerprint recognition in the past. In this paper, a powerful image representation called scattering transform/network, is used for recognition. Scattering network is a convolutional network where its architecture and filters are predefined wavelet transforms. The first layer of scattering representation is similar to sift descriptors and the higher layers capture higher frequency content of the signal. After extraction of scattering features, their dimensionality is reduced by applying principal component analysis (PCA). At the end, multi-class SVM is used to perform template matching for the recognition task. The proposed scheme is tested on a well-known fingerprint database and has shown promising results with the best accuracy rate of 98\%.Comment: IEEE Signal Processing in Medicine and Biology Symposium, 201

    Scale Invariant Interest Points with Shearlets

    Full text link
    Shearlets are a relatively new directional multi-scale framework for signal analysis, which have been shown effective to enhance signal discontinuities such as edges and corners at multiple scales. In this work we address the problem of detecting and describing blob-like features in the shearlets framework. We derive a measure which is very effective for blob detection and closely related to the Laplacian of Gaussian. We demonstrate the measure satisfies the perfect scale invariance property in the continuous case. In the discrete setting, we derive algorithms for blob detection and keypoint description. Finally, we provide qualitative justifications of our findings as well as a quantitative evaluation on benchmark data. We also report an experimental evidence that our method is very suitable to deal with compressed and noisy images, thanks to the sparsity property of shearlets
    corecore