48,284 research outputs found

    A Cartesian cut cell based two-way strong fluid-solid coupling algorithm for 2D floating bodies

    Get PDF
    In a recent paper Kelly et al. (2015) [PICIN: A Particle-In-Cell solver for incompressible free surface flows with two-way fluid–solid coupling. SIAM Journal on Scientific Computing 37 (3), B403–24.] detailed the PICIN full particle Particle-In-Cell (PIC) solver for incompressible free-surface flows. The model described in that paper employed a tailored version of the Distributed Lagrange Multiplier (DLM) method for the strong coupling of fluid–solid interaction. In this paper we propose an alternative strong fluid–solid coupling algorithm based on a modification to the cut cell methodology that is informed by the variational approach. The solid velocity flux/integral on the boundary is expressed purely in terms of pressure leading to a revised pressure Poisson equation that is discretised in a finite volume sense. This approach allows the PICIN model to simulate the motion of floating bodies of arbitrary configuration. 2D test cases involving floating bodies with one or more degrees of freedom (DoF) are used to validate the modified PICIN model. The results presented show that the modified PICIN model is able to both efficiently and robustly predict the motions of surface-piercing floating structures under either regular or extreme wave action

    Distributed-memory large deformation diffeomorphic 3D image registration

    Full text link
    We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image analysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to 102431024^3 on the "Maverick" and "Stampede" systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of 2563256^3---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA; November 201
    • …
    corecore