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Abstract

In a recent paper Kelly et al. (2015) [PICIN: A Particle–In–Cell solver for incompressible free surface

flows with two–way fluid–solid coupling. SIAM Journal on Scientific Computing 37 (3), B403–B424.]

detailed the PICIN full particle Particle–In–Cell (PIC) solver for incompressible free–surface flows.

The model described in that paper employed a tailored version of the Distributed Lagrange Multiplier

(DLM) method for the strong coupling of fluid–solid interaction. In this paper we propose an alter-

native strong fluid–solid coupling algorithm based on a modification to the cut cell methodology that

is informed by the variational approach. The solid velocity flux/integral on the boundary is expressed

purely in terms of pressure leading to a revised pressure Poisson equation that is discretised in a finite

volume sense. This approach allows the PICIN model to simulate the motion of floating bodies of

arbitrary configuration. 2D test cases involving floating bodies with one or more degrees of freedom

(DoF) are used to validate the modified PICIN model. The results presented show that the modified

PICIN model is able to both efficiently and robustly predict the motions of surface–piercing floating

structures under either regular or extreme wave action.

Keywords: Computational Fluid Dynamics, Navier Stokes pressure projection, Particle–In–Cell, Cut

Cell, Two–Way Fluid Structure Interaction, Floating Bodies

1. Introduction

In the past few decades wave structure interaction including, amongst other things, wave generation

and absorption, wave slamming, green water overtopping and floating structures has been widely
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Email address: Q.Chen@bath.ac.uk (Qiang Chen)
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studied both experimentally and numerically within the coastal and offshore engineering community

(Faltinsen et al., 2004; Chen et al., 2014b; Gao and Zang, 2014; Oliveira et al., 2012; Zhao and Hu,

2012). In particular, floating structures as well as their response under wave actions are of great

interest (Koo and Kim, 2004; Hadžić et al., 2005; Zhao and Hu, 2012; Bouscasse et al., 2013; Weller

et al., 2013; Zhao et al., 2014). This paper focuses on developing a strong coupling algorithm for the

investigation of two–way fluid–solid interactions with an emphasis on floating bodies. This algorithm

involves two major issues: a Cartesian cut cell based technique for solid boundary representation and

a strong coupling scheme for two–way fluid–solid interactions. Both issues are introduced, followed by

a brief description of the full particle PIC based numerical model PICIN (Kelly et al., 2015), which is

employed as a framework for the proposed strong fluid–solid coupling approach in this paper.

Numerically, various models have been proposed for representing solid boundaries and simulating

fluid–solid interactions. Focusing on Eulerian methods we highlight the immersed boundary (IB)

technique (Peskin, 1972, 2002), which transfers solid boundary effect to a force field on the fluid

grid. However, this approach may cause the fluid to permeate structures as mentioned in Batty et al.

(2007). Glowinski et al. (1999) and Patankar (2001) proposed the Distributed Lagrange Multiplier

(DLM) method for particulate flows. This approach is straightforward to implement and has previously

been extended for use in the PICIN model. Nevertheless, the DLM method may have limitations in

simulating surface–piercing floating bodies within the current PICIN model as discussed below. Batty

et al. (2007) introduced the variational framework for the solution of pressure in fluid flow for fluid–

solid interactions, and demonstrated that this method can be easily coupled with freely moving solids

of arbitrary geometry. However, Ng et al. (2009) argue that the variational approach is not convergent

in the L∞ norm for problems involving fixed structures and thus not suitable for computations where

velocity field around objects is important; instead, they proposed a novel and more accurate Cartesian

cut cell method for simulating fluid interacting with fixed and motion prescribed solids. The so–called

Cartesian cut cell approach has been widely used as an alternative approach to unstructured grids

for structures with complex body shapes (Noh, 1963; Purvis and Burkhalter, 1979; Quirk, 1994; Ye

et al., 1999); it offers great advantages when moving boundaries are employed since there is no need to

re–mesh the computational grid (Yang et al., 2000; Qian et al., 2006; Ng et al., 2009). In the context of

inviscid compressible flow Noh (1963) first suggested combining the idea of a cut cell fraction with an

application of the finite volume method to treat (deformable) solid boundaries. A similar approach was

also proposed by Purvis and Burkhalter (1979) to solve the equations of transonic potential flow. This
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procedure was then further investigated by Ng et al. (2009) with regard to the order of convergence

and accuracy; results from Ng et al. (2009) show a second–order accuracy in both the L1 and L∞

norms in 2D. In this paper, we follow the cut cell approach of Ng et al. (2009) for its high accuracy

in resolving fluid–solid interactions and simplicity in handling moving boundaries. We show that it is

straightforward to implement this approach in PICIN and it is convergent in the L2 norm in 2D when

the grid is sufficiently fine. The detailed description of this cut cell approach is given in Section 2.

In a coupled fluid–solid system, when the influence from one aspect to another becomes negligible,

a one–way coupling will work well, e.g. the simulation of a piston type wavemaker (Chen et al.,

Unpublished results). In most cases, however, both the solid and the fluid phase interact with each

other and two–way fluid–solid coupling is required, e.g. Hadžić et al. (2005); Batty et al. (2007); Zhao

et al. (2014); Kelly et al. (2015). Among those schemes, when solid structures are only used to provide

velocity boundaries for the solution in the fluid domain and the fluid is solely employed to give a

pressure boundary for solid computations, they are usually termed as weak coupling (e.g. Hadžić et al.

(2005); Zhao et al. (2014)). In this sense, strong coupling is defined to mean that the effects of fluid

and solid boundaries are treated simultaneously. Typical examples of strong coupling schemes can be

found in Patankar et al. (2000); Batty et al. (2007); Kelly et al. (2015). The PICIN model is currently

only suitable for incompressible fluids. Within this framework, we found that when implementing a

weak coupling scheme, especially for studies of wave and floating structure interactions, the behaviour

of pressure in the fluid domain can be very stiff which causes instabilities in both fluid and solid

motion calculations. The main reason for this is that the fluid pressure is used not only to update

the solid domain but also to maintain the flow incompressibility in the PICIN solver; therefore, an

inaccurate value for the velocity change on the solid boundaries will cause large pressure fluctuations

inside the fluid phase which in turn exerts an incorrect force on the structure and can ultimately cause

the numerical model to fail. This type of stiff pressure behaviour in algorithms for incompressible flow

has been discussed previously by Fedkiw (2002). Although this unstable pressure behaviour can be

potentially alleviated by iterating the solver to a convergent state (e.g. Hadžić et al. (2005); Borazjani

et al. (2008)), the CPU cost is, in many cases, prohibitively expensive. Thus, strong fluid–solid coupling

schemes are the preferred approach to be adopted in the PICIN model. The model previously used a

modified version of the DLM method of Patankar et al. (2000) for fluid–solid interactions. The solids

are treated exactly as fluids at first and then a velocity correction within the solid phase is made due

to the density differences and a rigidity constraint. This method is efficient and has been applied for
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coastal flows in a previous study (Chen et al., Unpublished results). However, since in this approach

the solids are treated as fluids in the initial stages, the surface–piercing portion of a rigid floating body

needs to be treated as the free surface of the fluid. It is necessary, and non–trivial, to consistently

apply the boundary conditions, especially in the presence of angled corners such as floating boxes. The

DLM approach thus requires further validation and improvements within the PICIN model when it is

to be used for simulating surface–piercing floating structures for engineering applications. Instead, in

this paper, we focus on the strong coupling approach presented by Batty et al. (2007), where the fluid

pressure in cells immediately surrounding the solid body are connected together and implicitly solved

within a variational framework. Here we combine this implicit approach to the fluid solid motion with

the cut cell based solid boundary representation of Ng et al. (2009) instead, within the PICIN model

framework. We show that this new approach enables our model to simulate floating body cases in a

stable and efficient manner.

The PICIN model is a full particle Particle–In–Cell solver (Brackbill and Ruppel, 1986; Zhu and

Bridson, 2005; Kelly, 2012) for incompressible free–surface flows and is especially designed for coastal

and offshore engineering applications. As a hybrid Eulerian–Lagrangian approach, the PICIN model

has both the flexibility of a Lagrangian approach in terms of simulating complex free–surface flow

and the efficiency of an Eulerian approach. The model adopts the pressure projection technique first

proposed by Chorin (1968) for the solution of incompressible Newtonian Navier–Stokes equations. Two

major steps are implemented within this model: the Eulerian step and the Lagrangian step. In the

Eulerian step the governing equations are first resolved on the uniform grid by ignoring the advection

term which is then solved in a novel way during the Lagrangian step using the particles initially seeded

in cells. The particles are also employed to detect the free surface where the boundary condition is

enforced by a second–order accurate technique. In addition, information transfer between the particles

and grids are conducted using interpolations or smoothed particle hydrodynamics (SPH)–like kernel

functions. In this paper, an alternative new fluid and structure interaction scheme is developed and

validated through the modelling of cases involving surface–piercing floating bodies.

The paper is organised as follows: Section 2 gives an overview of the modified PICIN model

including the governing equations and major numerical schemes. In particular, Section 2.4 outlines the

numerical solution technique of the proposed strong fluid–solid coupling scheme; Section 3 summarises

the implementation of a piston–type wavemaker for either regular wave or focused wave generation and

the relaxation zone approach for wave absorption in the PICIN model; In Section 4 we compare results
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of the modified PICIN model with three test cases involving surface–piercing floating body motions;

Finally, conclusions are drawn in Section 5.

2. The Modified PICIN Model

2.1. Governing equations

The model adopts a standard pressure projection method following Chorin (1968) to solve the

incompressible Newtonian Navier–Stokes equations:

∇·u = 0, (1)

∂u

∂t
+ (u · ∇)u = f − 1

ρ
∇p+ ν∇2u, (2)

where, in two spatial dimensions, u = [u,w]T is the velocity field, t is time, p is pressure, f =

[0.0,−9.81]T represents the body force due to gravity, ρ is the liquid density, and ν is the kinematic

viscosity of the fluid. During the Eulerian step the governing equations are resolved ignoring the

advection term of the momentum equation, which is handled using particles during the Lagrangian

step. This is both more computationally efficient and straightforward than an Eulerian advection step.

We note that in this paper the governing equations are solved for a single phase flow where the fluid

region is indicated by particles. Following Harlow and Welch (1965), we use a staggered grid where

pressures are stored at cell centres and velocities are computed at relevant cell faces. Four particles

are initially seeded in each cell and cells occupied by particles are marked as fluid cells while air cells

correspondingly have no particles inside.

2.2. Eulerian step

Following the pressure projection method (Chorin, 1968) a tentative velocity ũ is first given by

applying the body force and physical dissipation as an Euler step in time:

ũ− un

∆t
= ν∇2ũ + f , (3)

where un is the velocity at tn. While the body force is computed explicitly, the viscosity term is

treated implicitly and we use the bi–conjugate gradient (BCG) method (Press et al., 1992) for solving

the linear equation system constructed by applying Eq. 3 in the fluid region. The next step is then to
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find a pressure pn+1 to maintain the incompressibility condition Eq. 1. Recalling the remaining part

of the momentum equation, we have

(un+1 − ũ)

∆t
= −ρ−1∇pn+1. (4)

By taking the divergence of both sides of Eq. 4 and applying ∇·un+1 = 0, a pressure Poisson equation

can be obtained:

∆tρ−1∇2pn+1 = ∇· ũ . (5)

During the solution of this pressure Poisson equation, the following boundary conditions on the

free surface and moving solid boundaries are resolved respectively:

u = ui and p = 0 on ζ(x, t), (6)

where ζ = ζ(x, t) is the free surface and:

u = ui and n · (∆tρ−1∇p) = n · (ũ− un+1) on ∂ΩS(x, t), (7)

where ΩS and ∂ΩS represent the solid domain and solid boundary, respectively. It is noted here that

the zero pressure boundary condition is imposed on the free surface defined by the particle positions

using a second–order accurate technique proposed in Gibou et al. (2002); details on the implementation

of this approach within the PIC framework can be found in Kelly et al. (2015). The solid boundary

condition is no–slip and will be implicitly computed within the discretisation of pressure Poisson

equation detailed in Section 2.4.1.

After solving the pressure Poisson equation, the pressure field pn+1 is found and the next step is

to project the tentative velocity onto a divergence–free velocity field using the pressure as a Lagrange

multiplier:

un+1 = ũ−∆tρ−1∇pn+1. (8)

2.3. Lagrangian step

Once a divergence–free velocity field on the grid is found, the velocity or velocity change will be

interpolated onto the particles to update the velocity that each particle carries. The updated particle

velocity is denoted as UF only if the velocity change on the grid is used to increment the particle
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velocity, which follows the full particle PIC approach that is used in the FLIP code of (Brackbill and

Ruppel, 1986), and it is represented by UC if grid velocity is directly transferred onto the particles using

the classic PIC scheme of Harlow (1964). Note that while the classic PIC suffers from a large numerical

dissipation due to the velocity transfer at each time step, Brackbill and Ruppel (1986) claimed that

their full particle PIC scheme achieves almost no numerical diffusion. However, this full particle PIC

scheme may suffer from noisy behaviour due to the absence of viscosity (Ando et al., 2012). Following

Zhu and Bridson (2005) and Ando et al. (2012), we use a weighted average of the two schemes for the

final particle velocity:

u = cUF + (1− c)UC , (9)

where c is an empirical weighting coefficient and is set to 0.96 in this paper. In practice when this

coefficient is close to, but less than, unity, the change of this coefficient was found to have negligible

influence.

The particles carrying the newly updated velocity field are then advected through the grid velocity

field using the third–order accurate Runge Kutta scheme of Ralston (1962). Once the particles are

advected, the velocity is transferred back onto the grid for the next time step calculation. In the current

model, while the velocity is interpolated from the grid to the particles using the fourth–order accurate

weighted essentially non-oscillatory (WENO) scheme proposed by Edwards and Bridson (2012), it is

transferred back to the grid via an SPH–like cubic spline kernel function (Monaghan and Lattanzio,

1985). We note that the fourth–order WENO scheme helps to reduce the numerical dissipation due

to truncation error from the spatial discretisation. The overall accuracy of our numerical scheme

cannot, however, be expected to be formally high-order. This is due to the errors that arise from other

numerical approximations; for instance, the discretisation of Poisson equation is second–order accurate

in space.

2.4. Numerical Solution Procedure

The strong fluid–solid coupling scheme and free–surface tracking approach are discussed in the

following sections. For other numerical techniques used in the model such as velocity extrapolation

from fluid cells to air cells (for particle advection), particle position redistribution (for high accuracy)

and time step control (for numerical stability), the reader is referred to Kelly et al. (2015).
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2.4.1. Strong fluid–structure coupling

In weak fluid–solid coupling schemes, once the fluid pressure field is resolved, an integration of fluid

pressure on the solid boundary is usually carried out to calculate the fluid forces on the structures and

move them according to Newton’s second law of motion (e.g. Zhao et al. (2014)). When implementing

the weak coupling scheme in PICIN, it is found that the motion of free moving structures can become

unstable leading to a blow–up of the code. The main reason is that as the incompressible flows are

solved using the pressure projection method, a small error in predicting the velocity of the moving

body will cause a significant pressure change which in turn leads to an incorrect body motion and vice

versa. Instead of iterating the whole scheme to improve the stability (e.g. Hadžić et al. (2005)), in

this paper an efficient strong coupling algorithm is proposed and it is described below.

The strong coupling algorithm detailed here is based on the cut–cell type approach discussed in

Ng et al. (2009). Following Ng et al. (2009), the discretisation of the Poisson equation (Eq. 5) on an

irregular domain is conducted as follows. Fig. 1 shows the staggered computational grid used in the

numerical model. The solid boundary is represented by a polyline with equal segment length, ∆l. Let

ΩF be the fluid domain and Gij represents the cell (i− 1/2, i+ 1/2)× (j − 1/2, j + 1/2). By applying

the finite volume approach to Eq. 5 and evoking the divergence theorem, we have

∆tρ−1

∫
∂(Gij∩ΩF )

n · ∇pn+1 dA =

∫
∂(Gij∩ΩF )

n· ũ dl, (10)

where dl and dA denote the length and area differential respectively; n is the unit normal vector

pointing out of the solid. Rewriting the boundary integral on both cell edges and solid faces of Eq. 10

into the approximate form we have

∫
∂(Gij∩ΩF )

n · ∇pn+1 dA ' Si− 1
2 ,j
·

(pn+1
i−1,j − p

n+1
i,j )

∆x
+ Si+ 1

2 ,j
·

(pn+1
i+1,j − p

n+1
i,j )

∆x
+

Si,j− 1
2
·

(pn+1
i,j−1 − p

n+1
i,j )

∆z
+ Si,j+ 1

2
·

(pn+1
i,j+1 − p

n+1
i,j )

∆z
−
∫
Gij∩∂ΩS

n · ∇pn+1 dA (11)

and likewise

∫
∂(Gij∩ΩF )

n· ũ dl ' Si+ 1
2 ,j
·ũi+ 1

2 ,j
−Si− 1

2 ,j
·ũi− 1

2 ,j
+Si,j+ 1

2
·w̃i,j+ 1

2
−Si,j− 1

2
·w̃i,j− 1

2
−
∫
Gij

⋂
∂ΩS

n·ũsolid dl,

(12)
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where S is the cell fraction that is open to water, i.e. not occupied by solid; S in PICIN is computed

through a Signed Distance Field (SDF) constructed on cell vertices (the detail implementation can be

found in Kelly et al. (2015)). Recalling the solid boundary condition (Eq. 7) gives

∫
Gij∩∂ΩS

n · ∇pn+1 dA =
ρ

∆t

∫
Cij

⋂
∂ΩS

n · (ũsolid − un+1
solid) dl, (13)

substituting Eq. 11–Eq. 13 all into Eq. 10 and rewriting the equation, we finally obtain:

Si− 1
2 ,j
·
∆t(pn+1

i−1,j − p
n+1
i,j )

ρ∆x
+Si+ 1

2 ,j
·
∆t(pn+1

i+1,j − p
n+1
i,j )

ρ∆x
+Si,j− 1

2
·
∆t(pn+1

i,j−1 − p
n+1
i,j )

ρ∆z
+Si,j+ 1

2
·
∆t(pn+1

i,j+1 − p
n+1
i,j )

ρ∆z

= Si+ 1
2 ,j
· ũi+ 1

2 ,j
− Si− 1

2 ,j
· ũi− 1

2 ,j
+ Si,j+ 1

2
· w̃i,j+ 1

2
− Si,j− 1

2
· w̃i,j− 1

2
−
∫
Gij

⋂
∂ΩS

n · un+1
solid dl. (14)

The above equations provide a symmetric positive definite linear system for pressure computation,

which is solved by the BCG method in the PICIN model. It is also noted that this cut–cell type

approach has been shown to be second–order accurate in both the L1 and L∞ norms in 2D by Ng

et al. (2009).

i,ji-1,j

i,j-1i-1,j-1 i+1,j-1

i-1,j+1 i+1,j+1

i+1,j

i,j+1

Fig. 1: Staggered computational grid where pressure is stored at cell centres (black square) and x and z velocity
components are computed on vertical (white circle) and horizontal (white square) cell edges, respectively. The shaded
area represents the solid phase; the boundary has been discretised into small line segments.

Following Kelly et al. (2015) and Chen et al. (Unpublished results), Eq. 14 in this paper is im-

plemented for fixed solids or solids with prescribed motions for which un+1
solid is known. Calculations

involving free moving objects are more complicated and we re–interpret the technique proposed by

Batty et al. (2007) to implicitly calculate solid velocity using a J operator that maps the pressure to
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net forces and torques on the body:

Un+1 = Un + ∆tM−1
s Jpn+1 + ∆tf , (15)

where Un+1 and Un are the solid velocity at time step n + 1 and n, respectively; Ms is the mass

matrix of the solid object and the J operator is formed as follows. Following Batty et al. (2007), for

example, the x−component of translational forces on the body can be written as:

Fx = −
∫∫

∂ΩS

pn dA = −
∫∫∫

ΩS

∇p dV , (16)

where dV denotes the volume differential. Rewriting the above equation into its discretised form in

2D we have

Fx ' −
∑
i,j

Vi+1/2,j
pi+1,j − pi,j

∆x
, (17)

where Vi+1/2,j is the cell volume occupied by the solid body and it will be discussed in Section 2.4.2.

Rewriting Eq. 17 we obtain the x−translational part of the operator J :

J1,(i,j) =
Vi+1/2,j − Vi−1/2,j

∆x
. (18)

The z−translational part is formed in the same manner. The torque on a solid object can be expressed

as:

M = −
∫∫

∂ΩS

(r − rc)× pn dA =

∫∫∫
ΩS

∇p× (r − rc) dV , (19)

where r is the point of action and rc is the centre of mass which is also the rotation centre in this

paper. Similar to the translational part, the torque part of the operator J can be obtained in the same

manner and is given as follows:

J3,(i,j) = −
Vi,j+1/2 − Vi,j−1/2

∆z
(xi −Xc) +

Vi+1/2,j − Vi−1/2,j

∆x
(zj − Zc) , (20)

where xi, zjandXc, Zc are the components of the coordinates of the action point and mass centre,

respectively.

Once the operator J is organised, it is straightforward to show that the solid velocity Un+1 is

actually an explicit expression of pressure via Eq. 15–Eq. 20, which means that the velocity boundary
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integral on the right hand side of Eq. 14 can also be expressed as a function of pressure as the velocity

at any point on the body surface can be computed by

usolid = Ut + Uw ×R , (21)

where Ut and Uw are the translational and rotational velocity of the solid, respectively; R = r − rc

represents a vector pointing from the rotation centre to the boundary point. As mentioned above, the

solid boundary is discretised into small segments with the same length. Therefore, in a single cell (i, j)

the velocity boundary integral of Eq. 14 can be approximated by

∫
Gij

⋂
∂ΩS

n · un+1
soliddl '

∑
nij

nk ·
(
uk + Qk(Ms, J,∆t, p

n+1)
)

∆l , (22)

where nk is the outward pointing unit normal vector; uk represents boundary velocity due to Un

and f ; Qk denotes the boundary velocity transferred from the pressure immediately surrounding the

structure; nij is the total number of boundary segments located inside cell (i, j). Note that nk, uk

and Qk are all defined at the centre of each boundary segment and nij is computed at each time step

by detecting whether the centre of a segment is located inside the cell or not. This may produce some

inaccuracy which is found to be negligible when using an empirical ratio ∆l/∆x ∼ 0.2. The Qk term

on the right hand side of Eq. 22 connects all the boundary pressures together and it will be added to

the left hand side of Eq. 14 modifying the linear equation system for the pressure computation. The

linear system is now not necessarily positive definite or symmetric due to the above manipulation as the

Qk term changes between cells due to the differing ratios of cell volumes occupied by solids. However,

Press et al. (1992) state that the BCG solver can still be expected to work under these conditions. It

is noted that, in Batty et al. (2007), the solid velocity in Eq. 15 is expressed as the kinetic energy of

the solids that is directly added to their energy minimization process. In our scheme the velocities

on the solid boundary points are further calculated using Eq. 22 for our cut cell based finite volume

discretisation of the pressure Poisson equation. In addition, a different approach to compute the solid

volume fraction V is required due to the fact that we employ the cut cell technique. This is described

in the following section.

After the pressure field is found on the underlying grid, one can update the solid velocity directly

using Eq. 15. Alternatively, in this paper the pressure on the grid is firstly interpolated onto the

central points of individual boundary segments, and then the fluid force on each segment is calculated
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and integrated to obtain the overall force on the solid. Finally, the solid velocity and position are

updated using a simple Euler based integration with respect to time. In this way, sub–grid scale

accuracy on the calculation of fluid force on the solid is achieved, compared with using Eq. 15, which

integrates the fluid force on the grid scale. It is noted that during the solution of the pressure Poisson

equation, the Qk term in Eq. 22 updates the solid velocity using the pressures only in the surrounding

fluid cells where the pressure values need to be resolved; therefore, due to the grid discretisation, the

hydrostatic case for floating bodies may not be guaranteed, as the fluid cell centres, where the pressure

values are stored, are usually not aligned with the solid boundary. To compensate for this, before the

interpolation for fluid pressure on the solid boundary segments is performed, the pressure field on fluid

cells is linearly extrapolated, considering the effect of gravity, into cells fully occupied by solids, where

no pressure values are resolved.

2.4.2. Cell volume occupied by solids

In this section both the current method and the corresponding one employed in Batty et al. (2007)

to compute the solid volume fraction V , used in Eq. 18 and Eq. 20 for forming the operator matrix J ,

are presented. Let us take the different types of cut–cell boundaries as shown in Fig. 2 as examples,

where type 1 boundary (left panel) and type 2 boundary (right panel) differ in whether the solid

boundary cuts the vertical grid face or not. Within the cell surrounding the horizontal velocity sample

ui+1/2,j , Batty et al. (2007) use the area of solid region (grey colour part in Fig. 2) as the solid volume

fraction, which is required by their variational framework for calculating the kinetic energy in cells

surrounding velocity samples. Alternatively, in this paper the approach is to use the fraction ratio θ

of the associated vertical cell edge that is occupied by the solid region and multiply it by the cell area,

i.e. V = θ(∆x)2. Here, in our case the solid fraction θ is straightforward to compute as it is simply

the complement to the open water fraction S mentioned above. Note that for the type 2 boundary θ

equals unity in the current approach, as the vertical face (i+ 1/2, j) is fully occupied by the solid.

The reason for using this method to calculate the cell volume is because, when the cut cell technique

is used for computing fluid pressures, there are no pressure values inside cells that are fully occupied by

solids, in which case, the method of Batty et al. (2007) is not appropriate for our scheme in mapping

fluid pressure into net forces on solid bodies. However, by using the current approach, the pressures

in full solid cells cancel out via Eq. 18 and Eq. 20. For example, in a type 2 boundary, assuming cell

(i+ 1, j) and (i+ 2, j) is fully occupied by solids, then Vi+3/2,j = Vi+1/2,j = (∆x)2, which, according

to Eq. 18, results in a zero value for coefficient J1,(i+1,j) of the operator J , and thus eliminates the
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requirement of having a pressure value in cell (i+ 1, j) for the calculation of horizontal fluid force on

the solid.

i,j

u

i+/2,j



i+1,j

Type 1

boundary

i,j

u

i+/2,j

i+1,j

Type 2

boundary

Fig. 2: Cell volume calculation. The dashed line surrounded area represents the cell surrounding velocity sample ui+1/2,j

with solid region indicated by the grey colour.

2.4.3. Free–surface tracking

The particles in the PICIN model are used not only for advecting the divergence–free velocity field

but also to track the free surface. In PICIN the boundary conditions are resolved on the Eulerian

grid during the solution of the pressure Poisson equation. Following Gibou et al. (2002), we impose

a second–order accurate free surface boundary condition on the free surface defined by the particle

positions. This is achieved via a SDF constructed at the centre of every single grid cell with respect

to the free surface.

Assuming the SDF φ < 0 inside the fluid phase and φ > 0 outside the fluid domain, φ = 0 thus

represents the free–surface contour. We first use the method of Zhu and Bridson (2005) to compute

SDF value on the closest air cells to the free surface based on the particle position:

φca(x) = |x− x̄0| − r0 (23a)

x̄0 =

∑
i xiW (kh,x− xi)∑
iW (kh,x− xi)

(23b)

where φca represents the SDF value on the closest air cell to free surface; x is the particle position

vector; r0 denotes a constant value for particle radius; W is the cubic spline kernel function (Monaghan

and Lattanzio, 1985) with kh the so–called kernel length determining the neighbourhood of involved

particles. This technique can reconstruct the SDF of an isolated particle as well as flat or smooth

surfaces but may have disadvantages in concave regions where x̄ may end up outside the surface (Zhu

and Bridson, 2005). In practice, effects of this drawback are negligibly small when the resolution is

high as the neighbourhood of particles used are just within one or two cell lengths. Once this step is

completed along all the free surface boundary, those seed SDF φca are then spread out onto cells along
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the free surface by solving the Eikonal equation:

|∇φ(x)| = f(x), x ∈ Ω (24a)

φ(x) = φca(x), x ∈ Γ(x, t) ∈ Ω (24b)

φ(x) = φb(x), x ∈ ∂Ω (24c)

where f(x) equals -1 (inside the fluid domain) or 1 (outside the fluid domain); Ω and ∂Ω are the

computational domain and the domain boundary, where a boundary value of SDF φb is given; Γ(x, t)

represents the closest air cell boundary with φca being the SDF value computed from the above

boundary reconstruction approach. Eq. 24 are solved using the fast sweeping approach proposed in

Zhao (2004), which is efficient and straightforward. In fact, to make this scheme more efficient, in

PICIN the SDF is spread to a cell band around Γ(x, t) rather than the whole domain Ω.

It is worth mentioning that the SDF with respect to the solid boundary is constructed on the cell

vertices in the same manner discussed here.

2.5. Algorithm

In summary, the modified PICIN model has the following steps for the time integration:

(1)Update the positions of both fluid particles and solid structures independently.

(2)Transfer the velocity from particles to the grid and compute tentative velocities for relevant cell

faces.

(3)Construct the SDF at cell centres for imposing the free surface boundary conditions and at cell

vertices for applying the solid boundary conditions.

(4)Construct and resolve the modified pressure Poisson equation using the coupling scheme intro-

duced in this paper.

(5)Project the tentative velocity to a divergence–free velocity field using pressures.

(6)Update the velocities of both solid objects and fluid particles separately.

(7)Update the time step controlled by the Courant number and repeat step (1) to (7).

3. Numerical wave tank in PICIN

A numerical wave tank is set up following the methodology described in Chen et al. (Unpublished

results). Numerical waves are generated by a Piston–type wavemaker and absorbed at the downstream
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end of the tank via a relaxation zone method. Linear wave theory is used for wave generation by

giving a prescribed velocity wall boundary which is resolved via Eq. 14. For wave absorption, the

relaxation zone approach of Jacobsen et al. (2012) is adopted; the velocity of particles at the end of

the computational domain is forced to be the desired analytical solution, which in our case is water

at rest. Both of these techniques are validated for regular wave generation and absorption within the

PIC framework in Chen et al. (Unpublished results) and have been used for all test cases in this paper.

For the test case in Section 4.3, a focused wave generation is required where the free–surface

elevation can be expressed following Zhao and Hu (2012):

η(x, t) =
∑
n

an cos(kn(x− xf )− ωn(t− tf )) , (25)

In which, following Chen et al. (2014b),

an = Af
S(ωn)∆f∑
n S(ωn)∆f

, (26)

where kn and ωn are the wave number and wave frequency for the nth wave component, respectively;

xf , tf and Af are the focused position, focused time and focused wave crest value; S(ω) is the wave

energy spectrum representing wave energy distribution. In order to compare the results with Zhao and

Hu (2012), the Joint North Sea Wave Project (JONSWAP) spectrum form proposed in Goda (1999)

is used in this paper:

S(fi) = βJH
2
1/3T

−4
p f−5

i e[−5/4(Tpfi)
−4] · γexp[−(fiTp−1)2/2σ2] (27)

with

βJ =
0.06238(1.094− 0.01915 ln γ)

0.230 + 0.0336γ − 0.185(1.9 + γ)−1
, (28)

and γ = 3.3, σ = 0.07(ω < ωp) and σ = 0.09(ω ≥ ωp), where fi is the frequency of wave component

and Tp is the peak frequency of spectrum.

With the free–surface elevation determined from Eq. 25, it is straightforward to obtain the moving

velocity of the Piston–type wavemaker at location x0 according to linear wavemaker theory (Dean and

Dalrymple, 1991):

Ub(x0, t) =
∑
n

ωn
Tr(ωn)

an cos(kn(x0 − xf )− ωn(t− tf )) , (29)
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with

Tr(ωn) =
4sinh2knh

2knh+ sinh2knh
, (30)

where Tr is the transfer function and h is the water depth. We note here that the position of the

Piston–type wavemaker at each time step is given by integrating Eq. 29 with respect to time.

4. Test cases

In this section a number of test cases are presented in which the new fluid–solid interaction scheme,

as well as the PICIN model, is validated against experimental data and other numerical results. Em-

phasis is given to the validation of the new scheme for hydrodynamic processes occurring in the vicinity

of coastal and offshore structures by three benchmark cases; these are: i) Wave force on a fixed sub-

merged cylinder (Dixon et al., 1979), ii) 1–DoF roll motion of a rectangular box under regular wave

conditions (Jung et al., 2006), and iii) 2–DoF floating structures under extreme wave conditions (Zhao

and Hu, 2012).

4.1. Wave force on a fixed horizontal cylinder

This test case was experimentally studied by Dixon et al. (1979) in order to improve Morison’s

equation on wave force calculation for fixed, horizontal, partially submerged cylinders. This case was

also numerically investigated by Westphalen et al. (2014) using a state–of–the–art weakly compressible

SPH (WCSPH) method. We compare our model results with both the experimental and the numerical

data, in order to assess the performance of the numerical scheme in terms of calculating dynamic

pressures and forces. We impose a no–slip boundary condition for the solid boundary of the investigated

structure and free–slip boundary conditions on the computational domain walls as well as boundaries

of the wavemaker, and these are set the same for all test cases in this paper.

A cylinder, with diameter D, is initially submerged in still water of depth h. The cylinder submer-

gence, d, is defined as the distance of the centre of the cylinder from the free surface. Regular waves of

amplitude A and period T are generated to interact with the cylinder. We select two test conditions

found in Dixon et al. (1979) and Westphalen et al. (2014). The key parameters of the tests are shown

in Table 1, where the cylinder diameter is D = 1 m in current simulations.

In the numerical model, regular waves are generated using the techniques presented in Section 3

and the length of damping zone is at least 2.5 times wave length in both tests (see Table 1) to maintain

the wave reflection at around 1% (Chen et al., Unpublished results). The numerical wave tank is 150
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Table 1: Characteristics of investigated sub–merged cylinder and incident wave.

Test condition 1 Test condition 2
d/D -0.3 0
A/D 0.2 0.5
kA 0.08 0.2
kh 1.61 1.61

*k is the wave number.

m long and 5 m high in total with the cylinder placed at 70 m from the wavemaker. Four sets of

computational grid sizes are used for the convergence test for test condition 1, and ∆x = ∆z = D/20

is chosen to produce data for comparison for both test conditions, resulting in about 958,000 particles

with a grid resolution of 3000× 100. The time step is dynamically controlled by setting the maximum

Courant number to 0.5, which is used throughout this paper unless stated otherwise. It took about

10.3hrs for 66s simulation (20 wave periods) for test condition 1 at an Intel(R) Core(TM) i7–4600U

CPU@2.1GHz laptop.

The non–dimensional vertical wave force F
′

z on the cylinder is calculated for comparison:

F
′

z =
Fz

1/4πD2lρg
, (31)

where Fz is the measured vertical wave force and l is the length of cylinder. Note that the vertical

wave force Fz is calculated by subtracting the buoyancy force of the submerged cylinder with water

at rest from the overall vertical wave force which, in the experiment, was measured over one cycle

starting at the point when the water line would have crossed the still water level going upwards at the

position of the front edge of the cylinder, in the absence of the model.

The convergence test and comparison of the vertical wave force with experimental data and the

WCSPH model are shown in Fig. 3, for test condition 1 (d/D = −0.3). The data were sampled when

the waves are fully developed and the vertical wave force reaches the steady state (see Fig. 3(a)).

Fig. 3(b) shows a comparison of the results for four sets of grid sizes, and Table 2 presents the L2

error norm for data of 20 wave periods and the order of convergence. It is noted that the results run

with the grid size D/25 were used as the reference data, as this is the finest grid that almost reaches

the limitation of our computational resources. It can be seen that the results are convergent when the

grid size is D/20.

Snapshots of the free surface and horizontal velocity field during a typical wave cycle for test

condition 1 are plotted in Fig. 4. Together with Fig. 3(c), it can be found that, for each cycle, the
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vertical wave force first increases as the wave crest surges onto the cylinder and then decreases sharply

to a negative value when the wave trough comes into action. Also, it can be seen from Fig. 3(c) that

the agreement of results between current numerical model and the experiment is very good. Compared

with the WCSPH model, our PICIN model predicts better results for both the amplitude and phase of

the vertical wave force. Similarly, the vertical wave force comparison and snapshots of the free surface

and pressure field for test condition 2 (d/D = 0) are shown in Fig. 5 and Fig. 6, respectively. For test

condition 2, the magnitude of the wave force is relatively large as the wave condition is much more

violent and the cylinder is above the water surface during most of the wave period. It can be seen

from Fig. 5 that the numerical results agree well with the experimental data, and our results seem to

be better around the second peak of the vertical wave force.
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Fig. 3: Time history of non–dimensional vertical wave force on the cylinder for test condition 1 (d/D = −0.3). (a)
Numerical data of 20 wave periods from PICIN. (b) Zoom in comparison for results from different grid sizes (c) Zoom
in comparison between experimental and selected numerical results.

Table 2: Convergence test for vertical wave force on cylinder for test condition 1 in test case 1.

Grid size L2 error norm Order of convergence
D/10 1.033 –
D/16 0.481 1.62
D/20 0.312 1.95

The development of spikes in the wave force signal is noted for both numerical models. While this

is the case for the WCSPH model used by Westphalen et al. (2014), Skillen et al. (2013) demonstrate
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Fig. 4: Snapshots of wave interaction with fixed cylinder for test condition 1 (d/D = −0.3) starting from t = 0.25T (a)
with an approximately 0.25T time interval.
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Fig. 5: Time history of non–dimensional vertical wave force on the cylinder for test condition 2 (d/D = 0). (a) Numerical
data of 20 wave periods from PICIN. (b) Zoom in comparison between experimental and selected numerical results.

that this noise can be reduced significantly by an approach based on the incompressible SPH model. In

our case this is probably due to the use of fluid particles to track the free surface as well as indicate the

fluid region. In cases involving violent fluid–solid interactions, a fluid cell will occasionally have only
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Fig. 6: Snapshots of wave interaction with fixed cylinder for test condition 2 (d/D = 0) starting from t = 0.25T (a) with
an approximately 0.25T time interval.

one or two particles inside, which may lead to pressure fluctuation due to a lack of resolution. Further

improvements could be made by using phase averaging techniques during result post processing that

may smooth some of these spikes.

4.2. Roll motion of a rectangular box

We use this test case to validate the capability of the numerical model in simulating 1–DoF roll

only box motion under regular wave conditions. This is an example of the situation where the viscous

damping is particularly important in controlling the box motion near the resonance frequency(Downie

et al., 1988). To ensure 1–DoF motion for this case in our fluid–solid interaction scheme, the surge

and heave motion of the structure and relevant translation velocities in Eq. 21 are simply set to zero.

This case was experimentally studied by Jung et al. (2006) with an emphasis on the vortex inter-

action with the roll motion of the box. The experiments were carried out at Texas A&M University

and a sketch of the experimental set up is presented in Fig. 7. The physical model was performed in

a 35 m long and 0.9 m wide wave tank with water depth set to be 0.9 m. A rectangular box with

dimensions of 0.3 m long, 0.1 m high and 0.9 m wide is fixed onto the tank and only allowed to rotate

along its centre of gravity (0.05 m from the keel) such that the flow can be considered as 2D. The draft

of the box is 0.05 m and the moment of inertia of the actual mass of the box is I = 0.236 kg·m2. In

addition, the fluid velocity in the experiment was measured by the particle image velocimetry (PIV)

technique. The range of the tested wave conditions for the numerical study were selected according to
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Jung et al. (2006) and these are shown in Table 3.

0.9
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Fig. 7: Sketch of experimental wave tank in Jung et al. (2006) (Unit: m).

Table 3: Experimental wave conditions.

Test Frequency ω(rad/s) Height H(m) kA
1 8.98 0.029 0.1191
2 7.85 0.029 0.0912
3 7.39 0.033 0.0919
4 6.76 0.040 0.0931
5 6.28 0.044 0.0887
6 5.24 0.060 0.0849
7 4.49 0.061 0.0653

Simplifications are made for the wave tank in our numerical model. First, the horizontal position

of the roll box in our numerical model is not fixed at x = 20 m as shown in Fig. 7, instead, we change

the position according to wave conditions and thus change the length of wave tank correspondingly. In

particular, for test 1 ∼ 5 the length of numerical wave tank is 20 m with the floating box placed at a

distance of 14.5 m from the wavemaker and for test 6 and 7 these are 30 m and 20.5 m, respectively. By

placing the floating body closer to the wavemaker, we ensure that the roll motion will be fully developed

before being contaminated by secondary reflections from the wave paddle, as active absorption has

not been yet implemented in the PICIN model, and having a shorter computational domain is also

beneficial in terms of minimising any numerical diffusion that may be present. Second, instead of using

a horsehair structure to damp out the wave at the end of wave flume, we used an absorption zone as

discussed in Section 3, which was at least 2.5 times the wave length of each wave condition. The cell

size used for all tests in this case is ∆x = ∆z = 0.01 m, resulting in a total cell number ranging from

270,000 to 405,000. The CPU cost varies from case to case; for example, it took about 10.9 hrs for 43

seconds of simulation at an Intel(R) Core(TM) i7–4600U CPU@2.1GHz laptop for the test (ω = 5.24
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rad/s) with the maximum 405,000 cells and 1,061,000 fluid particles.

A free decay test of the roll box is first carried out in calm water. The rectangular box is initially

given an inclination with an angle of 15 degree and released to roll freely. As shown in Fig. 8,

during each cycle the roll motion decayed because of the damping effect. It can be observed that

the roll motion is damped out much faster in experiment than the numerical simulation. For further

comparison, following Jung et al. (2006), the free decay time history is used to calculate the loss of

roll amplitude against mean angle of roll in each swing, from which the slope of the linear fit line is

used for computing the damping coefficient b (Bhattacharyya, 1978):

b =
K1TN∆GM

π2
, (32)

where K1 is the slope of the linear fit line; TN is the natural period; ∆ is the volume of displacement;

GM is the metacentric height, which is defined as the distance between the centre of gravity and the

metacentre of the floating structure, and in this case is equal to 0.125 m. By averaging the time interval

between each peak of the free decay curve we obtain the natural frequency of the roll box is ωN = 6.91

rad/s which is slightly higher than the value from experiment, 6.78 rad/s, and via Eq. 32 we have a

damping coefficient b = 0.293 which is less than 0.519 from the experiment. We note that the smaller

damping coefficient in this case has also been shown in the results of other numerical models; e.g.

Nematbakhsh et al. (2013); Ghasemi et al. (2014); Chen et al. (2014a). As for our model, this smaller

damping coefficient in the numerical simulation may be, to some extent, due to the absence of the extra

friction damping from the physical devices used in the experiment. More importantly, the model does

not include the strong turbulent dynamics developed during the box roll motion as demonstrated in the

experiment of Jung (2005), which, without getting into the details, will increase the effective viscosity

of the fluid and cause more energy dissipation in the system. As a 2D numerical approach, the current

model cannot directly resolve the turbulent effects that correspond to the physical processes. In order

to resolve turbulent effects for the 2D model, the Reynolds–Averaged Navier Stokes equations, coupled

with a transport model for the turbulence properties (e.g. k–epsilon or k–omega) (Wilcox et al., 1998),

could be used for future investigation. It is also worth noting that since currently our model does not

use a turbulence closure model, turbulent boundary layers are not properly resolved. This could be

an additional source of the large discrepancy between experimental and modelled results as shown in

Fig. 8. Fig. 9 presents the comparison for the results of steady state roll motion magnified by kA under

different wave frequencies. As can be observed, our results are overall more energetic than those of
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experiment, which is consistent with the damping coefficient b from our numerical model being smaller

than the experimental one, due to the reasons given above.
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Flow separation at the corner of the structure also has an important effect for wave frequencies

lower than the natural frequency of the free rolling structure, in which case, as pointed out in Jung

et al. (2006), the vortex shedding due to flow separation at structure corners leads to an amplification

of the roll motion rather than a damping out of the motion. We observed similar phenomena from our

numerical results. Fig. 10 presents a snapshot of both vorticity field and velocity field interpolated on

the particles for a low wave frequency case ω = 5.24 rad/s (ω/ωN = 0.77). Similar to that discussed

in Jung et al. (2006), after the box reaches the maximum angle of clockwise motion, a strong negative
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vortex (clockwise) is generated when the box rolls back (Fig. 10(a) to (b)). This negative vortex,

initially tending to damp out the roll motion, is quickly reversed, and then a strong positive vortex

is formed and stays ahead of the structure roll direction (Fig. 10(c) to (e)) due to the separation of

relatively high speed flow at the structure corners. This positive vortex actually helps the repeated

clockwise roll motion. Similarly, when the box starts the clockwise motion again, a negative vortex is

formed ahead of the moving direction of the box due to the separation of high speed flow (Fig. 10(f)

to (g)), which again helps the clockwise roll motion. So, during most stages of the cycle the generated

vortices are actually enhancing the roll motion rather than damping it, which results in a larger roll

motion than the result obtained by linear potential flow theory in the low frequency area (see Fig. 9),

where there is enough time for the vortices to develop.

4.3. Floating body under extreme wave conditions

This test case concerns the simulation of the coupling heave and roll motion of a floating body

under both regular wave and extreme wave conditions. This case was previously investigated by Zhao

and Hu (2012) where experimental data as well as the numerical results from Constrained Interpolation

Profile (CIP) method are available for comparison. The experiments were carried out in a wave tank

at the Research Institute for Applied Mechanics (RIAM) Kyushu University, Japan. The wave tank is

18 m long, 0.3 m wide and 0.7 m high and is equipped with a plunge–type wave generator and a wave

absorbing device at each end. The water depth is fixed at h = 0.4 m throughout the experiments.

Fig. 11 shows a schematic of the experimental set–up. The floating body is a symmetrical rectangular

box with a deckhouse and the major parameters of this structure are given in Table 4. The floating

body is connected with a heaving rod through the rotational joint which is initially placed at the free

surface of calm water. The heaving rod can move smoothly through the slider mechanisms fixed on

guide rails on the top of the tank such that the floating structure can move in heave and roll motion

with surge motion being restricted. The mass of the floating body and heaving rod are m1 = 14.5 kg

and m2 = 0.276 kg, respectively. Wave gauges are placed at the upstream of floating body to measure

free–surface elevation and a pressure sensor is installed on the seaward side wall of the deckhouse at a

height of 0.01 m above the deck (see Fig. 11) to monitor the impact pressures.

For this test case, both regular wave and focused wave were generated in the experiment. The

regular wave period is chosen to be Tw = 1 s and the wave amplitude is A = 0.031 m. For the focused

wave, the peak frequency is fp = 1.0 Hz with frequency of wave components ranging from 0.6 to 1.6

Hz. The focused position, time and amplitude are set at xf = 7.0 m, tf = 20 s and Af = 0.06 m,
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Table 4: Major parameters of the floating structure.

Item Value (m)
Length 0.5
Breadth 0.29

Draft 0.1
Centre of gravity (from the bottom) 0.0796

Gyration radius 0.1535

respectively. In the numerical model, 29 wave components are used for the generation of the focused

wave. Note that the wave steepness for the regular wave is 0.133, and it is 0.258 for the focused wave

using the wave number of the peak frequency component and the focused wave amplitude; these imply

that weakly and strongly nonlinear waves are used for this test case, respectively.

To save CPU time for current numerical simulation, following Zhao and Hu (2012), the distance

from the centre of floating structure to the downstream end of the tank is reduced to be 7 m with 6 m

dedicated to the wave absorption zone. Both the regular waves and focused waves are generated using

the piston–type wavemaker technique as discussed in Section 3. The grid size is ∆x = ∆z = 0.00625 m,

resulting in a cell resolution of 2264× 120 with about 574,000 fluid particles. The maximum Courant

number is 0.4 for the time step control and it took approximately 8.3 hrs to complete a total 30 seconds

of simulation at an Intel(R) i7-4600U CPU@2.1GHz core laptop.

Fig. 12 shows comparisons of both the time history and the corresponding frequency spectrum of

floating body motion and free–surface elevation under regular wave conditions. On the top sub–panel

of the time history comparison (left panel in Fig. 12), the evolution of free–surface elevation in time

is presented, in the absence of the floating structure, with the data being recorded at the location of

the structure. This time series is presented for completeness, as no experimental data are available.

Since a large wave amplitude is used in this test case, the wave–on–deck occurs in both the current

numerical simulation, CIP modelling and experiment (Zhao and Hu, 2012). From the comparison of
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time history, it can be seen that our model under predicts the averaged amplitude of heave motion

by about 7.8% but over predicts the averaged amplitude of roll motion by about 4.2%, which may

be mainly due to that some effects of wave–on–deck that occurred in the experiments are not fully

resolved by the current 2D numerical model. We note that this also happened for numerical results

from the CIP model as discussed in Zhao and Hu (2012). However, our PICIN model gives much better

results than the CIP model in terms of the wave elevation at x = 5.1 m in the presence of the floating

structure (refer to Fig. 13 in Zhao and Hu (2012)), where the free surface is influenced by both the

incoming wave and the reflected wave from the floating body. We note that minor discrepancies in

phase are shown between our numerical results and experimental data for the time history of floating

body motions. The reasons for this are still unclear at the time of writing. For the comparison of

frequency spectrum (right panel in Fig. 12), it can be seen that the current model clearly captures

the nonlinear effects of the wave–wave interaction due to the large wave steepness; for example, the

second–order harmonic is presented in the generated regular waves (see the top sub–panel). Also, in

both the experimental and numerical results, the second– and third–order harmonics are found in the

wave elevations influenced by the wave–structure interaction (see the bottom sub–panel). It is also

found that some low frequency components around f = 0.5 Hz of the floating body motions are only

produced in the current numerical simulation. This is probably caused by the occurrence of pressure

spikes, as mentioned in Section 4.1, and it also partly accounts for the discrepancies as found in the

time history comparison of floating body motions. Nevertheless, the overall agreement between the

experiment and numerical simulation is good.

For the focused wave case, the input of focused wave amplitude and time are slightly adjusted in

the numerical model in order to make the wave groups focus with a crest value of 0.06 m at xf =7

m, where the floating body is placed. In the absence of a floating body, the numerical focused wave is

first generated and the wave profile at the focused position is compared with the experimental data as

shown in the top sub–panel of the time history comparison (left panel of Fig. 13). This configuration

of focused wave generation is then used for the investigation of wave interaction with the floating body.

The numerical time history results along with the corresponding frequency spectra are compared with

the experimental data, as shown in Fig. 13. From the time history comparison, it is found that the

PICIN model underestimates the nonlinear heave motion of the floating body by about 16.8% and

21.7% for the trough and the peak respectively, which may be due to the wave–on–deck effects as

discussed in the regular wave case. We note that here the nonlinearity in the floating body heave
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Fig. 12: Time history (left panel) and frequency spectrum (right panel) comparison for regular wave condition (A = 0.031
m).

motion is probably caused by the green water effect, violent wave impact on the structure and induced

complex free–surface motions described below. Nevertheless, the overall agreement for the floating

body motion, as well as wave elevation at x = 5.1 m, is good. Moreover, from the spectrum analysis

(right panel of Fig. 13), it can be seen that the current model captures the energy distribution for

both the focused wave and floating body motions across all frequency ranges, including both lower and

higher order harmonics.

Fig. 14 shows a set of numerical snapshots at the same time instant with the experimental pho-

tographs. We can see that the focused wave reaches the floating body and propagates on the deck,

leading to a flow impact on the deckhouse. The impact jet runs up and then overturns due to gravity,

resulting in violent wave breaking in front of the body. The PICIN model captures the major processes

of this violent fluid–solid interaction well, compared with the experiment, although it is noted that

our results seem to occur slightly earlier in time. The slightly earlier arrival of green water could be

due to that the structure heave and roll motion predicted by the model are slightly earlier than those

of the experiment (see the left panel in Fig. 13). This is probably caused by the discrepancy in the

generated numerical and experimental focused waves. We found that it is very challenging for the

model to produce exactly the same focused wave as the experiment.
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Fig. 14: Comparison between the CIP method (left) and experiment (middle) (reprinted from Zhao and Hu (2012),
Copyright (2012), with permission from Elsevier), and PICIN (right) for free–surface elevation and structure motion
under the focused wave condition (Af = 0.06 m).

The time history of fluid pressure on the pressure sensor (see Fig. 11) is also compared between

experimental and numerical data and it is shown in Fig. 15. From Fig. 15, it is observed that PICIN
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captures the variation trend of the pressures well for both the regular and the focused wave conditions.

In particular, peak pressures during the regular wave conditions are very well captured, although the

experimental data show that during wave run–down there is a higher residual pressure due to the

slower water drainage than that predicted by the numerical model. The same effect is observed in the

focused wave case for t > 20.5 s, and it is also confirmed by the observations in Fig. 14. The two

pressure peaks developing in the focused wave case are underestimated by the PICIN model, while

the trend is well captured. This underestimation is probably due to the single phase approach used

in the numerical model, as the role of air is believed to be important in the development of impulsive

pressures (Lind et al., 2015).

 

P
re

ss
ur

e 
(p

a)

0

500

1,000

time (s)
10 12 14 16 18 20

Regular.PICIN
REGULAR.exp

Regular.PICIN
REGULAR.exp

Exp.
PICIN

(a) Regular wave, A = 0.031 m

 

P
re

ss
ur

e 
(p

a)

0

1,000

2,000

time (s)
19 19.5 20 20.5 21

FOCUS.exp
FOCUS.PICIN

Exp.
PICIN

(b) Focused wave, Af = 0.06 m

Fig. 15: Pressure Comparison for different wave conditions.

5. Conclusions

This paper presents modifications to the PICIN model of Kelly et al. (2015) that allow for the

simulation of arbitrarily configured (surface piercing) floating bodies. The PICIN model has been

updated so that transfer of data from the grid to the particles now uses the high–order WENO scheme

proposed by Edwards and Bridson (2012). More importantly, a strong two–way fluid–solid coupling

scheme is proposed that can be used within the full particle PIC framework. This coupling scheme

combines the approach of cut cell type solid boundaries detailed in Ng et al. (2009) with ideas from the

strong fluid–solid coupling technique proposed in Batty et al. (2007). The key point of this coupling

methodology is that the velocity of the rigid body has been implicitly represented by the pressure

in cells immediately surrounding the solid and integrated into the procedure for solving a suitably

amended pressure Poisson equation. This makes the proposed scheme relatively stable and thus able

to handle violent interactions between waves and floating structures. We note this scheme should also

be straightforward to implement within other projection based incompressible flow solvers. Moreover,
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there is nothing to stop the approach being extended to three spatial dimensions. Three test cases

including waves impacting a fixed cylinder, roll motion of a rectangular floating box under regular

wave action and a floating structure under extreme wave conditions are presented to validate the

newly modified PICIN model. The agreement of our results with those from either other numerical

methods or experiments is good, showing the capability and potential of the modified PICIN model

to simulate surface–piercing floating bodies under differing wave conditions.
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