19,804 research outputs found

    Nonlinear Parabolic Equations arising in Mathematical Finance

    Full text link
    This survey paper is focused on qualitative and numerical analyses of fully nonlinear partial differential equations of parabolic type arising in financial mathematics. The main purpose is to review various non-linear extensions of the classical Black-Scholes theory for pricing financial instruments, as well as models of stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman (HJB) equation. After suitable transformations, both problems can be represented by solutions to nonlinear parabolic equations. Qualitative analysis will be focused on issues concerning the existence and uniqueness of solutions. In the numerical part we discuss a stable finite-volume and finite difference schemes for solving fully nonlinear parabolic equations.Comment: arXiv admin note: substantial text overlap with arXiv:1603.0387

    Evolutionary multi-stage financial scenario tree generation

    Full text link
    Multi-stage financial decision optimization under uncertainty depends on a careful numerical approximation of the underlying stochastic process, which describes the future returns of the selected assets or asset categories. Various approaches towards an optimal generation of discrete-time, discrete-state approximations (represented as scenario trees) have been suggested in the literature. In this paper, a new evolutionary algorithm to create scenario trees for multi-stage financial optimization models will be presented. Numerical results and implementation details conclude the paper

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    A convex duality method for optimal liquidation with participation constraints

    Full text link
    In spite of the growing consideration for optimal execution in the financial mathematics literature, numerical approximations of optimal trading curves are almost never discussed. In this article, we present a numerical method to approximate the optimal strategy of a trader willing to unwind a large portfolio. The method we propose is very general as it can be applied to multi-asset portfolios with any form of execution costs, including a bid-ask spread component, even when participation constraints are imposed. Our method, based on convex duality, only requires Hamiltonian functions to have C1,1C^{1,1} regularity while classical methods require additional regularity and cannot be applied to all cases found in practice

    Pricing European and American Options under Heston Model using Discontinuous Galerkin Finite Elements

    Full text link
    This paper deals with pricing of European and American options, when the underlying asset price follows Heston model, via the interior penalty discontinuous Galerkin finite element method (dGFEM). The advantages of dGFEM space discretization with Rannacher smoothing as time integrator with nonsmooth initial and boundary conditions are illustrated for European vanilla options, digital call and American put options. The convection dominated Heston model for vanishing volatility is efficiently solved utilizing the adaptive dGFEM. For fast solution of the linear complementary problem of the American options, a projected successive over relaxation (PSOR) method is developed with the norm preconditioned dGFEM. We show the efficiency and accuracy of dGFEM for option pricing by conducting comparison analysis with other methods and numerical experiments

    Reduced basis methods for pricing options with the Black-Scholes and Heston model

    Full text link
    In this paper, we present a reduced basis method for pricing European and American options based on the Black-Scholes and Heston model. To tackle each model numerically, we formulate the problem in terms of a time dependent variational equality or inequality. We apply a suitable reduced basis approach for both types of options. The characteristic ingredients used in the method are a combined POD-Greedy and Angle-Greedy procedure for the construction of the primal and dual reduced spaces. Analytically, we prove the reproduction property of the reduced scheme and derive a posteriori error estimators. Numerical examples are provided, illustrating the approximation quality and convergence of our approach for the different option pricing models. Also, we investigate the reliability and effectivity of the error estimators.Comment: 25 pages, 27 figure

    Execution and block trade pricing with optimal constant rate of participation

    Full text link
    When executing their orders, investors are proposed different strategies by brokers and investment banks. Most orders are executed using VWAP algorithms. Other basic execution strategies include POV (also called PVol) -- for percentage of volume --, IS -- implementation shortfall -- or Target Close. In this article dedicated to POV strategies, we develop a liquidation model in which a trader is constrained to liquidate a portfolio with a constant participation rate to the market. Considering the functional forms commonly used by practitioners for market impact functions, we obtain a closed-form expression for the optimal participation rate. Also, we develop a microfounded risk-liquidity premium that permits to better assess the costs and risks of execution processes and to give a price to a large block of shares. We also provide a thorough comparison between IS strategies and POV strategies in terms of risk-liquidity premium
    corecore