3 research outputs found

    Optical fibre-tip probes for SERS: numerical study for design considerations.

    Get PDF
    Enhancement of sub-wavelength optical fields using sub-micron plasmonic probes has found many applications in chemical, material, biological and medical sciences. The enhancement is via localised surface-plasmon resonance (LSPR) which enables the highly sensitive vibrational-spectroscopy technique of surface-enhanced Raman scattering (SERS). Combining SERS with optical fibres can allow the monitoring of biochemical reactions in situ with high resolution. Here, we study the electromagnetic-field enhancement of a tapered optical fibre-tip coated with gold nanoparticles (AuNPs) using finite-element simulations. We investigate the electric-field enhancement associated with metallic NPs and study the effect of parameters such as tip-aperture radius, cone angle, nanoparticle size and gaps between them. Our study provides an understanding of the design and application of metal-nanoparticle-coated optical-fibre-tip probes for SERS. The approach of using fibre-coupled delivery adds flexibility and simplifies the system requirements in SERS, making it suitable for cellular imaging and mapping bio-interfaces.Trinity College, Cambridge for a PhD studentship Darwin College, Cambridge for a Henslow Research Fellowshi

    SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition

    No full text
    A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs) with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP) with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD) technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L

    Recent Progress in Optical Fiber Research

    Get PDF
    This book presents a comprehensive account of the recent progress in optical fiber research. It consists of four sections with 20 chapters covering the topics of nonlinear and polarisation effects in optical fibers, photonic crystal fibers and new applications for optical fibers. Section 1 reviews nonlinear effects in optical fibers in terms of theoretical analysis, experiments and applications. Section 2 presents polarization mode dispersion, chromatic dispersion and polarization dependent losses in optical fibers, fiber birefringence effects and spun fibers. Section 3 and 4 cover the topics of photonic crystal fibers and a new trend of optical fiber applications. Edited by three scientists with wide knowledge and experience in the field of fiber optics and photonics, the book brings together leading academics and practitioners in a comprehensive and incisive treatment of the subject. This is an essential point of reference for researchers working and teaching in optical fiber technologies, and for industrial users who need to be aware of current developments in optical fiber research areas
    corecore