30 research outputs found

    Grothendieck inequalities for semidefinite programs with rank constraint

    Get PDF
    Grothendieck inequalities are fundamental inequalities which are frequently used in many areas of mathematics and computer science. They can be interpreted as upper bounds for the integrality gap between two optimization problems: a difficult semidefinite program with rank-1 constraint and its easy semidefinite relaxation where the rank constrained is dropped. For instance, the integrality gap of the Goemans-Williamson approximation algorithm for MAX CUT can be seen as a Grothendieck inequality. In this paper we consider Grothendieck inequalities for ranks greater than 1 and we give two applications: approximating ground states in the n-vector model in statistical mechanics and XOR games in quantum information theory.Comment: 22 page

    Separating the NP-Hardness of the Grothendieck Problem from the Little-Grothendieck Problem

    Get PDF

    Tight hardness of the non-commutative Grothendieck problem

    Get PDF
    We prove that for any ε>0\varepsilon > 0 it is NP-hard to approximate the non-commutative Grothendieck problem to within a factor 1/2+ε1/2 + \varepsilon, which matches the approximation ratio of the algorithm of Naor, Regev, and Vidick (STOC'13). Our proof uses an embedding of ℓ2\ell_2 into the space of matrices endowed with the trace norm with the property that the image of standard basis vectors is longer than that of unit vectors with no large coordinates

    Tight hardness of the non-commutative Grothendieck problem

    Get PDF
    We prove that for any ε > 0 it is NP-hard to approximate the non-commutative Grothendieck problem to within a factor 1=2+ε, which matches the approximation ratio of the algorithm of Naor, Regev, and Vidick (STOC’13). Our proof uses an embedding of ℓ2 into the space of matrices endowed with the trace norm with the property that the image of standard basis vectors is longer than that of unit vectors with no large coordinates. We also observe that one can obtain a tight NP-hardness result for the commutative Little Grothendieck problem; previously, this was only known based on the Unique Games Conjecture (Khot and Naor, Mathematika 2009)

    On streaming approximation algorithms for constraint satisfaction problems

    Full text link
    In this thesis, we explore streaming algorithms for approximating constraint satisfaction problems (CSPs). The setup is roughly the following: A computer has limited memory space, sees a long "stream" of local constraints on a set of variables, and tries to estimate how many of the constraints may be simultaneously satisfied. The past ten years have seen a number of works in this area, and this thesis includes both expository material and novel contributions. Throughout, we emphasize connections to the broader theories of CSPs, approximability, and streaming models, and highlight interesting open problems. The first part of our thesis is expository: We present aspects of previous works that completely characterize the approximability of specific CSPs like Max-Cut and Max-Dicut with n\sqrt{n}-space streaming algorithm (on nn-variable instances), while characterizing the approximability of all CSPs in n\sqrt n space in the special case of "composable" (i.e., sketching) algorithms, and of a particular subclass of CSPs with linear-space streaming algorithms. In the second part of the thesis, we present two of our own joint works. We begin with a work with Madhu Sudan and Santhoshini Velusamy in which we prove linear-space streaming approximation-resistance for all ordering CSPs (OCSPs), which are "CSP-like" problems maximizing over sets of permutations. Next, we present joint work with Joanna Boyland, Michael Hwang, Tarun Prasad, and Santhoshini Velusamy in which we investigate the n\sqrt n-space streaming approximability of symmetric Boolean CSPs with negations. We give explicit n\sqrt n-space sketching approximability ratios for several families of CSPs, including Max-kkAND; develop simpler optimal sketching approximation algorithms for threshold predicates; and show that previous lower bounds fail to characterize the n\sqrt n-space streaming approximability of Max-33AND.Comment: Harvard College senior thesis; 119 pages plus references; abstract shortened for arXiv; formatted with Dissertate template (feel free to copy!); exposits papers arXiv:2105.01782 (APPROX 2021) and arXiv:2112.06319 (APPROX 2022
    corecore