5 research outputs found

    Predicting Star Ratings based on Annotated Reviews of Mobile Apps

    Full text link

    Sentiment Analysis and Stance Detection on German YouTube Comments on Gender Diversity

    Full text link
    [EN] This paper explores different options of detecting the stance of German YouTube comments regarding the topic of gender diversity and compares the respective results with those of sentiment analysis, showing that these are two very different NLP tasks focusing on distinct characteristics of the discourse. While an already existing model was used to analyze the comments sentiment (BERT), the comments stance was first annotated and then used to train different models SVM with TF-IDF, DistilBERT, LSTM and CNN for predicting the stance of unseen comments. The best results were achieved by the CNN, reaching 78.3% accuracy (92% after dataset normalization) on the test set. Whereas the most common stance identified in the comments is a neutral one (neither completely in favor nor completely against gender diversity), the overall sentiment of the discourse turns out to be negative. This shows that the discourse revolving around the topic of gender diversity in YouTube comments is filled with strong opinions, on the one hand, but also opens up a space for anonymously inquiring and learning about the topic and its implications, on the other. Our research thereby (1) contributes to the understanding and application of different NLP tasks used to predict the sentiment and stance of unstructured textual data, and (2) provides relevant insights into society s attitudes towards a changing system of values and beliefs.Melnyk, L.; Feld, L. (2022). Sentiment Analysis and Stance Detection on German YouTube Comments on Gender Diversity. Journal of Computer-Assisted Linguistic Research. 6:59-86. https://doi.org/10.4995/jclr.2022.182245986

    Mining app reviews to support software engineering

    Get PDF
    The thesis studies how mining app reviews can support software engineering. App reviews —short user reviews of an app in app stores— provide a potentially rich source of information to help software development teams maintain and evolve their products. Exploiting this information is however difficult due to the large number of reviews and the difficulty in extracting useful actionable information from short informal texts. A variety of app review mining techniques have been proposed to classify reviews and to extract information such as feature requests, bug descriptions, and user sentiments but the usefulness of these techniques in practice is still unknown. Research in this area has grown rapidly, resulting in a large number of scientific publications (at least 182 between 2010 and 2020) but nearly no independent evaluation and description of how diverse techniques fit together to support specific software engineering tasks have been performed so far. The thesis presents a series of contributions to address these limitations. We first report the findings of a systematic literature review in app review mining exposing the breadth and limitations of research in this area. Using findings from the literature review, we then present a reference model that relates features of app review mining tools to specific software engineering tasks supporting requirements engineering, software maintenance and evolution. We then present two additional contributions extending previous evaluations of app review mining techniques. We present a novel independent evaluation of opinion mining techniques using an annotated dataset created for our experiment. Our evaluation finds lower effectiveness than initially reported by the techniques authors. A final part of the thesis, evaluates approaches in searching for app reviews pertinent to a particular feature. The findings show a general purpose search technique is more effective than the state-of-the-art purpose-built app review mining techniques; and suggest their usefulness for requirements elicitation. Overall, the thesis contributes to improving the empirical evaluation of app review mining techniques and their application in software engineering practice. Researchers and developers of future app mining tools will benefit from the novel reference model, detailed experiments designs, and publicly available datasets presented in the thesis

    Detection of spam review on mobile app stores, evaluation of helpfulness of user reviews and extraction of quality aspects using machine learning techniques

    Get PDF
    As mobile devices have overtaken fixed Internet access, mobile applications and distribution platforms have gained in importance. App stores enable users to search and purchase mobile applications and then to give feedback in the form of reviews and ratings. A review might contain critical information about user experience, feature requests and bug reports. User reviews are valuable not only to developers and software organizations interested in learning the opinion of their customers but also to prospective users who would like to find out what others think about an app. Even though some surveys have inventoried techniques and methods in opinion mining and sentiment analysis, no systematic literature review (SLR) study had yet reported on mobile app store opinion mining and spam review detection problems. Mining opinions from app store reviews requires pre-processing at the text and content levels, including filtering-out nonopinionated content and evaluating trustworthiness and genuineness of the reviews. In addition, the relevance of the extracted features are not cross-validated with main software engineering concepts. This research project first conducted a systematic literature review (SLR) on the evaluation of mobile app store opinion mining studies. Next, to fill the identified gaps in the literature, we used a novel convolutional neural network to learn document representation for deceptive spam review detection by characterizing an app store review dataset which includes truthful and spam reviews for the first time in the literature. Our experiments reported that our neural network based method achieved 82.5% accuracy, while a baseline Support Vector Machine (SVM) classification model reached only 70% accuracy despite leveraging various feature combinations. We next compared four classification models to assess app store user review helpfulness and proposed a predictive model which makes use of review meta-data along with structural and lexical features for helpfulness prediction. In the last part of this research study, we constructed an annotated app store review dataset for the aspect extraction task, based on ISO 25010 - Systems and software Product Quality Requirements and Evaluation standard and two deep neural network models: Bi-directional Long-Short Term Memory and Conditional Random Field (Bi-LSTM+CRF) and Deep Convolutional Neural Networks and Conditional Random Field (CNN+CRF) for aspect extraction from app store user reviews. Both models achieved nearly 80% F1 score (the weighted average of precision and recall which takes both false positives and false negatives into account) in exact aspect matching and 86% F1 score in partial aspect matching
    corecore