6,267 research outputs found

    Random Deposition Model with a Constant Capture Length

    Full text link
    We introduce a sequential model for the deposition and aggregation of particles in the submonolayer regime. Once a particle has been randomly deposited on the substrate, it sticks to the closest atom or island within a distance \ell, otherwise it sticks to the deposition site. We study this model both numerically and analytically in one dimension. A clear comprehension of its statistical properties is provided, thanks to capture equations and to the analysis of the island-island distance distribution.Comment: 14 pages, minor corrections. Accepted for publication in Progress of Theoretical Physic

    Fluctuations and scaling in models for particle aggregation

    Full text link
    We consider two sequential models of deposition and aggregation for particles. The first model (No Diffusion) simulates surface diffusion through a deterministic capture area, while the second (Sequential Diffusion) allows the atoms to diffuse up to \ell steps. Therefore the second model incorporates more fluctuations than the first, but still less than usual (Full Diffusion) models of deposition and diffusion on a crystal surface. We study the time dependence of the average densities of atoms and islands and the island size distribution. The Sequential Diffusion model displays a nontrivial steady-state regime where the island density increases and the island size distribution obeys scaling, much in the same way as the standard Full Diffusion model for epitaxial growth. Our results also allow to gain insight into the role of different types of fluctuations.Comment: 25 pages. Minor changes in the main text and in some figures. Accepted for publication in Surface Scienc

    Kinetic Monte Carlo simulations inspired by epitaxial graphene growth

    Full text link
    Graphene, a flat monolayer of carbon atoms packed tightly into a two dimensional hexagonal lattice, has unusual electronic properties which have many promising nanoelectronic applications. Recent Low Energy Electron Microscopy (LEEM) experiments show that the step edge velocity of epitaxially grown 2D graphene islands on Ru(0001) varies with the fifth power of the supersaturation of carbon adatoms. This suggests that graphene islands grow by the addition of clusters of five atoms rather than by the usual mechanism of single adatom attachment. We have carried out Kinetic Monte Carlo (KMC) simulations in order to further investigate the general scenario of epitaxial growth by the attachment of mobile clusters of atoms. We did not seek to directly replicate the Gr/Ru(0001) system but instead considered a model involving mobile tetramers of atoms on a square lattice. Our results show that the energy barrier for tetramer break up and the number of tetramers that must collide in order to nucleate an immobile island are the important parameters for determining whether, as in the Gr/Ru(0001) system, the adatom density at the onset of island nucleation is an increasing function of temperature. A relatively large energy barrier for adatom attachment to islands is required in order for our model to produce an equilibrium adatom density that is a large fraction of the nucleation density. A large energy barrier for tetramer attachment to islands is also needed for the island density to dramatically decrease with increasing temperature. We show that islands grow with a velocity that varies with the fourth power of the supersaturation of adatoms when tetramer attachment is the dominant process for island growth

    An Integral Equation Method for the Cahn-Hilliard Equation in the Wetting Problem

    Full text link
    We present an integral equation approach to solving the Cahn-Hilliard equation equipped with boundary conditions that model solid surfaces with prescribed Young's angles. The discretization of the system in time using convex splitting leads to a modified biharmonic equation at each time step. To solve it, we split the solution into a volume potential computed with free space kernels, plus the solution to a second kind integral equation (SKIE). The volume potential is evaluated with the help of a box-based volume-FMM method. For non-box domains, source density is extended by solving a biharmonic Dirichlet problem. The near-singular boundary integrals are computed using quadrature by expansion (QBX) with FMM acceleration. Our method has linear complexity in the number of surface/volume degrees of freedom and can achieve high order convergence with adaptive refinement to manage error from function extension

    Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    Get PDF
    On 31 March 1983, the University of Delaware's Center for Remote Sensing initiated a study to evaluate the spatial, radiometric and spectral performance of the LANDSAT Thematic Mapper for coastal and estuarine studies. The investigation was supported by Contract NAS5-27580 from the NASA Goddard Space Flight Center. The research was divided into three major subprojects: (1) a comparison of LANDSAT TM to MSS imagery for detecting submerged aquatic vegetation in Chesapeake Bay; (2) remote sensing of submerged aquatic vegetation - a radiative transfer approach; and (3) remote sensing of coastal wetland biomass using Thematic Mapper wavebands

    Phase Field Modelling of Submonolayer Epitaxial Growth

    Full text link
    We report simulations of submonolayer epitaxial growth using a continuum phase field model. The island density and the island size distribution both show scaling behavior. When the capillary length is small, the island size distribution is consistent with irreversible aggregation kinetics. As the capillary length increases, the island size distribution reflects the effects of reversible aggregation. These results are in quantitative agreement with other simulation methods and with experiments. However, the scaling of the island total density does not agree with known results. The reasons are traced to the mechanisms of island nucleation and aggregation in the phase field model.Comment: 6 pages, 5 figure

    WavePacket: A Matlab package for numerical quantum dynamics. III: Quantum-classical simulations and surface hopping trajectories

    Full text link
    WavePacket is an open-source program package for numerical simulations in quantum dynamics. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] and Part II [Comp. Phys. Comm. 228, 229-244 (2018)] which dealt with quantum dynamics of closed and open systems, respectively, the present Part III adds fully classical and mixed quantum-classical propagations to WavePacket. In those simulations classical phase-space densities are sampled by trajectories which follow (diabatic or adiabatic) potential energy surfaces. In the vicinity of (genuine or avoided) intersections of those surfaces trajectories may switch between surfaces. To model these transitions, two classes of stochastic algorithms have been implemented: (1) J. C. Tully's fewest switches surface hopping and (2) Landau-Zener based single switch surface hopping. The latter one offers the advantage of being based on adiabatic energy gaps only, thus not requiring non-adiabatic coupling information any more. The present work describes the MATLAB version of WavePacket 6.0.2 which is essentially an object-oriented rewrite of previous versions, allowing to perform fully classical, quantum-classical and quantum-mechanical simulations on an equal footing, i.e., for the same physical system described by the same WavePacket input. The software package is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics are available

    Effects of harvesting methods on sustainability of a bay scallop fishery: dredging uproots seagrass and displaces recruits

    Get PDF
    Fishing is widely recognized to have profound effects on estuarine and marine ecosystems (Hammer and Jansson, 1993; Dayton et al., 1995). Intense commercial and recreational harvest of valuable species can result in population collapses of target and nontarget species (Botsford et al., 1997; Pauly et al., 1998; Collie et al. 2000; Jackson et al., 2001). Fishing gear, such as trawls and dredges, that are dragged over the seafloor inflict damage to the benthic habitat (Dayton et al., 1995; Engel and Kvitek, 1995; Jennings and Kaiser, 1998; Watling and Norse, 1998). As the growing human population, over-capitalization, and increasing government subsidies of fishing place increasing pressures on marine resources (Myers, 1997), a clear understanding of the mechanisms by which fishing affects coastal systems is required to craft sustainable fisheries management
    corecore