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On 31 March 1983, the Jniversity of Delaware's Center for

Remote Sensing initia t °d a study to evaluate the spatial, radio-

metric and spectral pe 	 ^mance of the Landsat Thematic Mapper for

coastal and estuarine	 'es. The investigation was supported by

Contract NAS-5-27580 front the NASA Goddard Space Flight Center.

Our research was divided into three major subprojects. A

summary of the results for each subproject is o men below: Details

of each subproject are described in the three attached papers.

1. A Comparison of Landsat TM to KISS Imagery for Detecting
Submerged Ag:.atic Vegetation in Chesapeake Bay.

Landsat Thematic Mapper (TM) and Multispectral Scanner (MSS)
imagery generated simultaneously over r,uinea Marsh, Virginia, were

assessed in the ability to detect submerged aquatic, bottom-adhering
plant canopies (SAY), , An ,unsupervised elrlstering, algorithm , was

applied to both image types and the resulting classifications

compared to SAV distributions derived from color aerial photography.

Class confidence and accuracy were first computed for all water
areas and then only shallow areas where water depth was less than

six feet.. In both the TM and MSS imagery, masking water areas
deeper than six feet resulted in greater classification accuracy
at confidence levels greater than 50%. Both systems performed

poorly in detecting SAV with crown cover densities less than 70%.

On the basis of the spectral resolution, radiometric sensitivity,
and location of visible bands, TM imagery did not offer a signi-

ficant advantage over MSS data for detecting SAV in lower Chesapeake
Bay. However, because the TM imagery represents a higher spatial
resolution. smaller SAV canopies may be detected than is possible

with MSS data. Detailed results of this investigation are described

in the attached paper (Ackleson and Klemas 1985)•

2. Remote Sensing of Submerged Aquatic Vegetation:	 A

Radiative Transfer Approach.

Radiative transfer theory wal used to model upwelling radiance

for an orbiting sensor viewing En P^tuarine environment. The
envirorunent was composed of a clear maritime atmosphere, an opti-

cally 3haiiow estuary cf either cle^.r or turbid water, and one of
three possible bottom types: v^ et .p ion, sand, or mud. Upwelling

radiance was calculated for eac^: case in TM bands 1, 2 and 3 and
MSS bands 4 and 5 using data available in the literature. A
spectral quality index was usec to evaluate the relative effective-

ness of TM and MSS bands in defecting submerged vegetation.
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The effectiveness of an orbiting sensor in discriminating

spectrally between submerged features is a function of the inherent

contrast between the submerged features and how strongly the
bottom signal is attenuated by the water column. In optically

shallow water, the inherent contrast is the controlling factor.

Thus, the optimum sensor band is that which correlates with the
greatest inherent contrast between the submerged features. In the
optically deeper water, the optimum sensor band is that for which

the water column is most transparent.

In the clear ocean water, the optimum band for detecting

vegetation on a sand or mud bottom is shown to change with the
optical depth of the water. In the turbid San Vicente water, the

optimum band in optically shallow water remains the optimum band

in optically deeper water.

Under certain conditions, the spectral quality index will

decrease, to zero for some Intermediate depth and then increase,for

yet deeper depths. This could have a significant impact upon how

changes in water reflectance should be interpreted and can only be

predicted with detailed knowledge of the spectral variation of

optical parameters across the sensor band.

Radiometric calibration is shown to be a dominant factor in
determining which TM or MSS band will be optimum for detecting a

submerged feature such as SAV. Sensors with higher gain settings,

it generail, produce data with more information. The gain built
Into the TM sensors are significantly higher than those of the
MSS, giving TM data a clear advantage for detecting submerged

features. In several cases, a band is found to be optimum for

detecting SAV in a radiometric sense, anu yet sub-optimal in a

spectral context.

The Thematic Mapper appears to be useful for detecting

narrow SAV beds in the case of Broad Creek, Maryland. A nonpara-

metric classification of a 2 November 1982 image clearly discrimi-
nated ''between SAV and the surrounding unvegetated bottom.

3. Remote Sensing of Coasta l Wetland Biomass Using Thematic
Mapper Wavebands.

Spectral data, simulating Thematic Mapper bands 3, 4 and 5
were gathered in salt and brackish marshes using a hand-held

radiometer. Simple regression models were developed equating

spectral radiance indices with total live biomass for S. alterni.-
flora in a salt marsh and for a variety of plant species in a
brackish marsh. Models were then tested using an independent set

of data and compared to harvest estimates of bi.omass. In the salt

marsh, biomass estimates from spectral data were similar to har-

vest biomass estimates during most of the growing season. Estimates

of annual nit aerial primary productivity calculated from spectral

44.
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data were within 21% of production estimated from harvest data.
During August, biomass estimates from spectral data in the brackish

marsh were :3'cailar to h ' nmass estimated by harvesting techniques.

At other times during the growing season, spectral data estimates
of biomass were not always comparable to harvest biomass estimates.
Reasonable estimates of wetlands biomass are possible during the
peak of the growing season (August) using spectral data similar to
Thematic Mapper bands 3, 4 and 5 gathered with hand-held radio-

meters.

4. General Results

Eleven ,journal articles and proceedings papers were produced
during this research. They are listed on the following page. A

detailed paper on each of the three subprojects is included in

this report. During the course of this investigation, additional

comparisons of TM and MSS were made for coastal applications.
Results of a comparison of Landsat MSS, TM and simulated SPOT data
for coastal application were presented at symposia and are described

In several articles (Ackleson et al.. 105). , Some or . thethe results
of this comparison are summarized in Table 1. Basically, the
better spatial resolution of TM and SPOT offer major improvement
for detecting many features in the coastal zone which tend to be
narrow and long. This includes beds of submerged aquatic vegeta-

tion, submerged sand bars, pollution plumes, plots of marsh vege-

tation, etc. The Thematic Mapper offers additional improvements

due to its superior spectral bands. TM band 1 is particularly

important to studies of water properties and submerged features,

while TM band 7 is very sensitive to moisture content of vegetation,

which can be used as an indicator of plant vigor or stress. We
have also found that all ma'or wetland vegetation species can be

clearly discerned in TM imagery. The spatial resolution of TM
data appears to be better than 30 meters, i.e. it seems to be

closer to 25 meters than 30 meters.
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TABLE 1.

COMPARISON OF LANDSAT MSS

AND TM FOR COASTAL STUDIES

APPLICATION

Vegetation and LFrnd Use

Mapping

Biomass Measurement

Submerged Aquatic Vegetation

Eutrophication

Phytoplankton Blooms

Suspended Sediment Currents,

Turbidity Fronts

Pollution Plumes
Ocean Dumping

Bathymetry

Erosion Control

Ship Traffic
Harbor Planning

Gross Coastal Geomorphology

Sargassum
Open Ocean Fronts

Internal Waves

Sea State

IMPROVEMENT

Medium

Major

Major

Medium

Medium

toed i um

Major

Major

Minor

Medium

Minor

4.1
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FIGURE.5.
A portion of Chesapeake Bay is shown in plate a and an enlarged
portion of BrAw Creek, Maryland appears in plate U. The boxed
area within plats h was photographed from low altitude on
August 2, 1982. The photograph, plate c, shows a medium
size SAV bed adjacent to the shoreline.
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On 31 March 1983, the University of Delaware's Center for

Remote Sensing initiateA a study to evaluate the spatial, radio-
metric and spectral per mance of the Landsat Thematic Mapper for
coastal and estuarine s, ss. The investigation was supported by
Contract NAS-5-27580 from the NASA Goddard Space Flight Center.

Our research was divided into three major subprojects. A
summary of the results for each subproject is given below. Details
of each subproject are described in the three attached papers.

1. A Comparison of Landsat TM to lLSS Imagery for Detect
Submerged anurt a Vegetation in Chesa peake Bay.

Landsat Thematic Mapper (TM) and Multispectral Scanner (MSS)
imagery generated simultaneously over Guinea Marsh, Virginia, were
assessed in the ability to detect submerged aquatic, bottom-adhering

plant canopies (SAY.), An MsupRrvised .Cl yetgrin&. algorixhm.:wes
applied to both image types and the resulting classifications
compared t0 SAV distributions derived from color aerial photography.
Class confidence and accuracy were first computed for all water
areas and then only shallow areas where water depth was less than
six feet-. In both the TM and MSS imagery, masking water areas
deeper - than six feet resulted in greater classification accuracy
at confidence levels 6-eater than 50%. Both systems performed
poorly in detecting SAY with crown cover densities less than 70%.
On the basis of the spectral resolution, radiometric sensitivity,
and location of visible bands, TM imagery did not offer a signi-
ficant advantage over MSS data for detecting SAV in lower Chesapeake
Bay. However, because the TM imagery represents a higher spatial
resolution, smaller SAV canopies may be detected than is possible
with MSS data. Detailed results of this investigation are described
in the attached paper (Ackleson and Klemas .1985).

2. Remote Sensing of Submerged Aquatic Vegetation: A
Radiative Transfer Approach.

Radiative transfer theory was used to model upwelling radiance
for an orbiting sensor viewing an estuarine environment. The
environment was composed of a clear maritime atmosphere, an opti-
cally shallow estuary of either clear or turbid water, and one of
three possible bottom types: vegetation, sand, or mud. Upwelling
radiance was calculated for each case in TM bands 1, 2 and 3 and
MSS bands 4 and 5 using data available in the literature. A
spectral quality index was used to evaluate the relative effective-
ness of TM and MSS bands in detecting submerged vegetation.

t
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The effectiveness of an orbiviag sensor in uiacriminaL.ing
spectrally between submerged features is a function of the inherent
contrast between the submerged features and how strongly the
bottom signal is attenuated by the water column. In optically
shallow water, the inherent contrast is the controlling factor.
Thus, the optimum sensor band is that which correlates with the
greatest inherent contrast between the submerged features. In the
optically deeper water, the optimum sensor band is that for which
the water column is most transparent.

In the clear ocean water, the optimum band for detecting
vegetation on a sand or mud bottom is shown to change with the
optical depth of the water. In the turbid San Vicente water, the
optimum band in optically shallow water remains the optimum band
in optically deeper water.

Under certain conditions, the spectral quality index will
decrease• to zero for some tpterms4iata .depth.wi..C, then . inprea;p,for.
yet deeper depths.. This could have a significant impact upon how
changes in water reflectance should be interpreted and can only be
predicted with detailed knowledge of the spectral variation of
optical parameters across the sensor band.

Radiometric calibration is shown to be a dominant factor in
determining which TM or MSS band will be optimum for detecting a
submerged feature such as SAY. Sensors with higher gain settings,
ir. general, produce data with more information. The gain built
into the TM sensors are significantly higher than those of the
MSS, giving TM data a clear advantage for detecting submerged
features. In several cases, a band is found to be optimum for
detecting SAV in a radiometric sense, and yet sub-optimal in a
spectral context.

The Thematic Mapper appears to be useful for detecting
narrow SAV beds in the case of Broad Creek, Maryland. A nonpara-
metric classification of a 2 November 1982 image clearly discrimi-
nated between SAV and the surrounding unvegetated bottom.

3. Remote Sensing of Coastal Wetland Biomass Using Thematic
Mapper Wavebands.

Spectral data, simulating Thematic Mapper ban"'.s 3, 4 and 5
were gathered in salt and brackish marshes u:. rig a hand-held
radiometer. Simple regression models were developed equating
spectral radiance indices with total live biomass for S. alterni-
flora in a salt marsh and for a variety of plant species in a
brackish marsh. Models were then tested using an independent set
of data and compared to ,harvest estimates of biomass. In the salt
marsh, biomass estimates from spectral data were similar to har-
vest biomass estimates during most of the growing season. Estimates
of annual net aerial primary productivity calculated from spectral

z
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data were within Z1% of production estimated from harvest data.
During August, bioaass estimates from spectral data in the brankiah
marsh were similar :t^ 'ULwwass estimated by harvesting techniques.
At other times during the growing season, spectral data estimates
of biomass were not always comparable to harvest biomass estimates.
Reasonable estimates of wetlands biomass are possible during the
peak of the growing season (August) using spectral data similar to
Thematic Mapper bands 3, 4 and 5 gathered with hand -held radio-
meters.

4. General Results

Eleven j ournal articles and proceedings papers were produced
during this research. They are listed on the following page. A
detailed paper on each of the three subpro j ects is included in
this report. During the course of this investigation, additional
comparisons of TM and MSS were made for coastal applications.
Results of a comparison of Landsat MSS, TM and simulated SPOT data
for coastal application were presented at symposia and are described
In several 'articles ( Aokleson et aa .-•. 1985) t. Scm@..O; . #she results
of this comparison are summarized in Table 1. Basically, the
better spatial resolution of TM and SPOT offer major improvement
for detecting many features in the coastal zone which tend to be
narrow and long. This includes beds of submerged aquatic vegeta-
tion, _submerged sand bars, pollution plumes, plots of marsh vege-
tation, etc. The Thematic Mapper offers additional improvements
due to its superior spectral bands. TM band 1 is particularly
important to studies of water properties andsubmerged features,	

r
while TM band 7 is very sensitive to moisture content of vegetation,
which - can be used as; an indicator of plant vigor or stress. We
have also found that all major wetland vegetation species can be 	 .!
clearly discerned in TM imagery. The spatial resolution of TM
data appears to be better than 30 meters, i.e. it seems to be
closer to 25 meters than 30 meters.

xi
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TABLE 1.

COMPARISON OF LANDSAT MSS

AND TM FOR COASTAL STUDIES

APPLICATION

Vegetation and Land Use
Mapping

.Biomass Measuremerit'

Submerged Aquatic Vegetation

Eutrophication
Phytoplankton Blooms

Suspended Sediment Currents,
Turbidity Fronts

Pollution 'Plumes
Ocean Dumping

Bathymetry
Erosion Control...

Ship Traffic
Harbor Planning

Gross Coastal Geomorphology

Sargassum
Open Ocean Fronts

Internal Waves
Sea State

IMPROVEMENT

Medium

{

Ma j or

Medium

Medium
r

Medium a

Major

Major

Minor

Medium

Minor
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A COMPARISON OF LANDSAT TM TO MSS IMAGRRY FOR DETECTING
SUBMERGED AQUATIC VEGETATION IN LOWER CHESAPEAKE BAY

BY

S. Ackleson
V. Klemas

College of Marine Studies
University of Delaware

Newark, Delaware

Presented At The 1985 ACSM-ASPRS Fall Convention
September 8-13, Indianapolis, Indiana

ABSTRACT

Landsat Thematic Mapper (TM) and Multispectrai Scanner
(MSS) imagery generated simul'taneously over Guinea Marsh, Virginia
are assessed in the ability to detect submerged aquatic, bottom-
adhering plant canopies (SAV). An unsupervised clustering algorithm
la applied to both image types and the resulting classifications
compared %;o SAV distributions derived from color aerial photography.
Class confidence and accuracy are first computed for all water
areas and then only shallow areas where water depth is less than 6
feet. In both the TM and MSS imagery, masking water areas deeper
than 6 Ft. resulted in greater classification accuracy at confidence
levels greater than 50%. Both systems perform poorly in detecting
SAV with crown cover densities less than 70%. On the basis of the
spectral resolution, radiometric sensitivity, and location of visible
bands, TM imagery does not offer a significant advantage over MSS
data for detecting SAV in Lower Chesapeake Bay. However, because
the TM imagery represents a higher spatial resolution, smaller SAV
canopies may be detected than is possible with MSS data.
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INTRODUCTION

Submerged aquatic vegetation (SAV) is believed to play

a major role in the ecosystem of coastal, estuarine, and inland

waters. In Chesapeake Bay, species such as Zostera marina (eel

grass) provide food, shelter, and breeding areas for waterfowl,

fish, shellfish, and many other forms of aquatic life. Because of

the enormous commercial value of these areas, there exists a need

to periodically assess the distribution and abundance of submerged

aquatin plant communities.

Historically, data concerning SAV distribution and abundance

has been acquired through exhaustive field sampling programs. Today,

with the exception of very small scale studies, such surveys have

become prohibitively expensive.

More recently, color aerial photography has been shown to

provided much useful informati pn fpr mapping SAV (Banton and Newnan,

1976; Austin and Adams, 1978; Macomber, 1981 ; Orth et al., 1979;

Orth and Moore, 1981 and 1983) . Orth et al. (1979) and Orth and

Moore (1981) were able to document changes in the distribution and

abundance of SAV at six sites within Chesapeake Bay from aerial

photography dating back to 1937. Orth (1984) was able to map SAV

density within Lower Chesapeake Bay from color aerial photography

collected in 1979, 1980, 1982, and 1984. For each of these years,

SAV distribution has been 'delineated on 1:24000 USGS topographic

t
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quadrangles and classified according to apparent crown cover density;

<10%, 10-40x, 40-70%; and 70-100x.

Most recently, remote sensing data gathered from orbiting

platforms such as the LANDSAT series satellites has shown promise

in delineating SAV. 	 The degree to which these data may be used

depends upon the configuration of the particular sensor; I.e. spatial

and spectral resolution, band location, and radiometric sensitivity.

Jensen et al. (1980) successfully used Landsat Multispectral Scanner

(MSS) imagery to map kelp ( Macrocystis pyrifera) along the California

coast. The spatial resolution of MSS data is approximately 60

meters. Although the Landsat MSS collects data in four bands, two

visible bands and t.ro near infrared bands, only band 1 ( 500-600

nm) and band 2 (600-700 nm) are useful for detecting submerged

features because water is an efficient absorber of IR radiation.

In 1983, NASA launched Landsat 4 equipped not only with a

MSS but the first of a new series of scanners, the Thematic Mapper

(TM). The spatial resolution of TM imagery is approximately 28

meters and 3 of the 7 available bands are located in the optical

portion of the spectrum; band ' (450-520 nm), band 2 (530-610 nm)

and band 3 (620-690 nm). In addition, the radiometric sensitivity

of the TM is as much as 3 times that of the MSS (Table 1). All of

these attributes suggest that TM imagery should contain more sub-

merged features information than MSS data. The purpose of this

work is to compare the relative capability of TM imagery with MSS
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data for detecting SAV within Lower Chesapeake Bay. The compari-

son is based llnnr SAV distribution derived by Orth from color aerial

photography collected 28 days prior to the LANDSAT overpass.

DESCRIPTION OF STUDY AREA

The area of interest is located in Lower Chesapeake Bay,

at the mouth of the York River, along the southern shore of Mobjack

Bay (Figure 1). The area encompasses 41.1 km 2 , approximately 6.5

W of which is inhabited by SAV. These bottom-adhering canopies
are composed mostly of Zostera marina and Ruppia maritima and are

typically situated in shallow water adjacent to the shoreline.

During the summer, both of these species are abundant with Ruppia

occupying the most shallow areas (<.5m) and Zostera dominating

deeper areas to a depth of about 1.5m. During the winter, the SAY

distribution and abundance decreases as the Ruppia practically disap-

pears and the Zostera dies back significantly.	 .,

The bottom substrate throughout the study area is composed

of bright sand. From the air, the sav canopies appear as dark

patches upon an otherwise bright bottom.

The water clarity varies sez;•onally with most clear condi-

tions occurring in the winter monthre. During the summer, higher

nutrient concentrations, warmer water, and increased surface light
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Intensities, often induce plankton blooms. The resulting turbidity

may greatly reduce the ability of an observer or remote sensing

device to detect SAY. Van iine and Wetzel (1983) reported seasonal

averages of irradiance attenuation measured at several sites in

Lower Chesapeake Bay containing SAV. Their data indicate that

during the winter, the average depth at which the downwelling light

Intensity has decreased to 1% of the surface intensity for blue

(410 nm), green (540 nm) and red (671 nm) light is, respectively,

2.0m, 5.7 m, and 3.2m. During the summer, the mean attenuation

depth decreases to about 0.8 m, 1.9 m,, and 1.6 m for blue, green

and red light, respectively.

The tidal range throughout the Guinea Marsh area is approx-

imately 1 meter. Given the relatively turbid water conditions,

especially during the summer, remote sensing of SAV should be eon-

ducted as close to low tide as possible.

METHODOLOGY

Landsat TM and MSS imagery generated simultaneously over

the study area was classified using an Lins'upervised clustering algor-

ithm. All data analysis was perf pv med using an ERDAS 400 computer

system. The input parameters governing the operation of the clus-

tering program are defined as functions of the TM and MSS system

noise. The classified TM and MSS imagery are then compared, pixel-

.^,-	 ,_ ^,
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by-pixel, to digitized SAV distributions delineated from color

aerial photography. Class confidence and accuracy are calclilated

for eazn scene and used as a basis for comparing the two image types.

LANDSAT Imagery

LANDSAT TM and MSS imagery of the Guinea Marsh Brea was

generated simultaneously on July 19, 1984. At the time of the

overpass, 1009 local tine, the sky was cloud-free and reasonably

clear of haze. The soar zenith angle was 320 . The tide at Guinea

Marsh was flooding and low tide occurred at 0706 local time.

Prior to classification, each image was geometrically cor-

rected and registered to a {)SGS topographic quadrangle of the Guinea

Marsh area. The TM image was resampled to simulate 28 meter reso-

lution and the MSS data was resampled to simulate 60 meter resole-

Lion.

Reference SAY Maps

Since 1978, the Virginia Institute of Marine Science has

conducted annual and biannual surveys of SAV distribution within

Lower Chesapeake Bay (Orth and Moore, 1583). In each survey, 1:24000

color aerial photography was collected during the summer months.

The photography was then classified into several catagories of SAV

using viaual . interpretation techniques. SAV catagories are based
I
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upon spatially averaged crown densities and expressed as a percent

coverage or crown cover; 0-10%, 10-40x, 40-70%; and 70-100x. The

SAY delineations were then transferred to 1:24000 USGS topographic

quadrangles. The 	 1984 survey, conducted on June 21, 1984, 28

days prior to the Landsat overpass, is used here as a reference

with which to compare the classified TM and MSS imagery. A TM

reference image is created by digitizing the SAV map, using a CALCOMP

9100 digitizer, to simulate 28 meter resolution. To create the MSS

reference image, the SAV map is digitized to simulate 60 meter

resolution. In both cases, the image/SAV map registration accuracy

is t1 pixel.

Landsat TM And MSS Image Clustering

The image clustering algorithm, CLUSTER, was developed by

ERDAS Inc. and is based upon a program forrrrulat^?d by NASA/JSC as

part of the ASTEP software package ( ERDAS 400 linage Processing and

Geographic Information System User's Guide, .19C3). CLUSTER is a

two-pass unsupervised classifier designed to group pixels of a

multi-band image into N number of spectral classes. In the first

pass, the operator defines the maximum cluster radius (R), ' the

minimum Euclidean distance in P-space between cluster centroids

(D), where P is the number of spectral bands in the image, and the

maximum number of classes to be produced (N). The program considers

each pixel in a sequential manner, starting at the upper left corner

of the scene and progr6ssing line-by-lane' to the lower right corner.
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Class mean vectors, generated in the first pass, are used in the

second pass, wherein a minimum distance classifier is applied to

the entire image.

One disadvantage to using an unsupervised classifier such

as CLUSTER is the relatively small amount of control that the oper-

ator has over the program. Because image classification is a f , inc-

tion of the input variables, the operator must have some prior

knowledge of the scene variance in order to select reasonable values

of R, D and N. In this work, it is also necessary to standardize

the selection of input values in order,to provide a basis for com-

parison between the classified TM and MSS imagery.

As an image is generated by either the TM or the MSS, system

noise is introduced, primarily as a result of differences in detector

calibration, voltage fluctuations within the satellite, and round

off error in the digitization process. The effect of this noise

is to limit the ability of the sensor to detect more subtle varia-

tions in scene radiance than would normally be detected if the image

were noise-free. Within any clas;if!cation, no matter how sophis-

ticated the classifier, classes will be meaningful only if the

spectral separation from other classes is greater than the system

noise.

The maximum cluster radius and minimum distance between

olusters are defined as functions of the system noise as

-.	 .fig -^ ►^Y. ^-=
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R - .3s
	 (1)

and

D - 2R ,
	 (2)

where Og g is the variance Jr. count values as a result of system

noise. The system noise variance may be estimated for each image

band by calculating o 2 within a homogeneous region of the image.

The more homogeneous the region and the larger the number of pixels

within the region, the better the estimate of OS 2 . Within both

the TM and MSS imagery, optically deep water appeared to be most

homogeneous and geographically similar areas were selected within

each image for the estimate of os 2 . Within the TM image the area

comprised 90 pixels while, in the MSS image, 20 pixels were repre-

sented. Values of R and D used to classify the TM and MSS imagery

are shown in Table 2.

For each classification, N-54, the maximum number of classes

that CLUSTER can create. However, classification error can occur

when actual number of classes created is N. This will most likely

be the case when the selected values of R and D are small relative

to the variance in count values throughout the scene. When the

maximum number of clusters is reached, new clusters may not be

created until two or more of the existing classes are aggregated.

Within the TM and MSS scenes, the majority of scene variance occurs

within land areas. Therefore, prior to running the classifier,
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all land areas within both images were masked using one of the IR

bands - TM band 4 ( 770-900 nm) and MSS band 4 (800-1100 nm). This

caused the classifier to assign ,just 1 class to land and allowed

as many as 49 water classes to be created.

Calculation Of Confidence And Accuracy

The classified TM ant MSS images are compared pixel-by-

pixel with the digitized, 1984 SAV distribution map of Guinea Marsh.

For each class, confidence and accuracy are calculated, where

# Correctly Classified Pixels

Confidence =	
# Pixels Within Class	 (3)

and

# Correctly Classified Pixels

Accuracy	
# SAV Map Pixels	 (4)

Within each class, a pixel is correctly classified if it correlates

with a SAV pixel within the reference image.

TM and MSS classification confidence and accuracy was first

computed for all water areas. Next, all water areas deeper than 6

feet were masked within the TM and MSS classifications using NOAA

chart 12238, published in 1979, digitized and registered to each

image. Class confidence and accuracy was tt.en recalculated and

compared with the values representing all water areas.
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RESULTS AND DISCUSSION

Classification accuracies com puted for all water areas

indicate no significant difference between TM and MSS imagery for

detecting SAV in the Guinea Marsh area (Table 3). Both data types

performed poorly in discriminating SAV canopies having crown cover

densities of 0-10%, 40-70%, and 70-100x. In the latter case, clas-

sification accuracies appeared to increase within the 50-75% and

75-100% confidence intervals, but the increases were too small to

be considered significant.

There appeared to be moderate success in detecting SAY crown

cover densities of 10-40%. This was a somewhat surprising result

as classification accuracies were expected to increase with SAV den-

sity. To further investigate this result, all pixels having a

classification confidence 250% were highlighted within the unclas-

sified TM and MSS imagery. A high correlation was found between

these pixels and bright areas within the imagery.

For any plant canopy, the volume reflectance may be divided

into 2 components; that light which is reflected from the plant

material and that light which is reflected from the underlying

substrate. When the canopy is dense (i.e. crown cover densities

a p; oaching 100%), the first component dominates the volume reflec-

tance of the canopy. As the plant density decreases, the second
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component increases. Within the Guinea Marsh area, the substrate

13 composed of bright sand and dense SAV canopies appP?r from the

air as dark areas upon an otherwise bright bottom. The fact that

pixels classified with high confidence for the 10-404 SAV crown

cover correlate with bright areas within the unclassified imagery

indicates that the classifier is not discriminating SAV, but rather

shallow sandy areas. Although aerial photography indicated a 10-40%

SAV crown cover, the TM and MSS scene radiance is dominated by	
1

i

i
reflectance from the bright, sandy substrate.

When all water areas of depth 2:6  feet are eliminated from

the classification analysis, accuracies for the 50-754 and 75-1005

confidence intervals were found to increase only for SAV of crown

cover density 70-1004 (Table 4).	 For the 75-1004 confidence inter-

val, TM classification accuracy increased from 0.25 to 19.7%.

MSS classification accuracies increased similarly; 0.55 to 13.3%.

All other accuracies remained unchanged for confidence levels greater

than 505. This indicates that within both TM and MSS imagery, it

Is difficult to distinguish between Lower Chesapeake Bay SAV and

optically deep water. More importantly, by masking optically deep

water, classification accuracies associated with high confidence

levels may be increased significantly.

The only advantage that TM imagery appears to have over MSS

data within this study is the a^.Ility to detect smaller canopies

and more clearly delineate larger canopies. The Nigher spatial

3^



13

resolution of TM imagery could further increase in importance for

study areas located In Upper Chesapeake Bay where the SAV canopies

tend to be smaller and less numerous than in the Lower Chesapeake

Bay.

CONCLUSIONS

Landsat TM and MSS imagery are similarly effective in de-

tecting SAV in Lower Chesapeake Bay occupying bright, sandy sub-

strates. The increased radiometric sensitivity and spectral reso-

lution and the addition of a third optical band does not afford TM

imagery a significant advantage over MSS data. However, the reader

is advised against. extending this conclusion to other topics in

water research or, for that matter, SAV occupying substrates having

a spectral reflectance more closely resembling the canopy. For

cases in which spectrally similar water masses are to be delineated

or when SAV is to be detected upon dark, muddy substrates, the

radiometric and spectral characteristics of the TM bands may offer

a significant improvement over those of the MSS.

The only apparent advantage to using TM imagery over MSS

data for detecting SAV in Lower Chesapeake Bay is that, by virtue

of higher spatial resolution, smaller SAV canopies may be detected.



14

REF nuns

Austin, A. and R. Adams. 1978. Aerial color and color infrared
survey of marine plant resources. Photogrammetric Engineering
and Remote Sensing. Vol. 44, No. 4, Pp. 469-480.

Eenton, A.R. and R.M. Newnam. 1976. Color aerial photography for
aquatic plant monitoring. Journal of Aquatic Plant Manage-

ment. Vol. 14, Pp. 14-16.

ERDAS luiage Processing and Geographic Information System User's
Guide. 1983. ERDAS Inc., 999 McMillan Street N.W., Atlanta,

Georgia.

Jensen, J.R., J.E. Estes and L. Tinney. 1980. Remote sensing tech-

niques for Kelp surveys. Photogrammetric Engineering and

Remote Sensing. Vol. 46, No. 6, Pp. 743-755.

Macomber, R.T. 1981. Mapping submerged aquatic vegetation in Che^sa-
peake Bay. In: G. Belie and P. Cornillion (eda.). Remote
sensing, a tool for managing the marine environment: Eight
case studies. University of Rhode Island Marine Technical

Report 77.

Orth, R.J., K.A. Moore and H.H. Gordon.-1979. Distribution and
abundance of submerged aquatic vegetation in Lower Chesapeake
Bay, Virginia. Final Report to USEPA. Chesapeake Bay Pro-

gram. EPA-600/8-79-029/SAVI.

Orth, R.J. and K.A. Moore. 1981. Submerged' aquatic vegetation of
the Chesapeake Bay: past, present and future. Trans. 46th
North American Wildlife and Reserve Conference. Pp. 271-283.

Orth, R.J. and K.A. Moore. 1983. Submerged vascular plants: Tech-
niques for analyzing their distribution and abundance. Marine
Technology Society Journal. Vol. 17, No. 2, Pp. 38-52.

Orth, R.J. 1984. Personal communication.

Stevenson, J.C. and N.M. Confer. 1978. Summary 6f available infor-
mation on Chesapeake Bay submerged vegetation. FWS/OBS-

78/66. U.S. Fish and Wildlife Service, Annapolis, Maryland.
333 P.

Van Tine, R.F. and R.L. Wetzel. 1983. Structural and functional

aspects of the ecology of submerged aquatic macrophyte
communities in the Lower Chesapeake Bay; Volume II; Submarine
light quantity ane quality in the Lower Chesapeake Bay and

its potential role in the ecology of submerged grass com-

munities. Special Re port too.	 Applied* Marine Science

1



15

and Ocean Engineering, Virginia Institute of Marine Studies,
Gloucester Point, Virginia.

Wetzel, R.L. 1983. Structural and functional aspects of the ecology

of submerged aquatic macrophyte communities in the Lower
Chesapeake Bay; Volume I; Studies on structure and function

of a temperate, estuarine seagrass community: Vaucluse

Shores, Lower Chesapeake Bay, Virginia, U.S.A. Special

Report No. 267. ApplledMarine Science and O cean Engineering,

Virginia Institute of Marine Studies, Gloucester Point,

Virginia.

1..



16

Table 1.

Radt'imetric Sensitivity' Of Optical TM And MSS Bands

Wavelength Region

Band (nm) Gain	 Offset

MSS1 500-600 5.570	 -1.114

"^S32 6OC-700 7.216	 -2.886

TM i 450-520 15.944	 2.423

TM2 530-610 8.199	 2.329

TM3 620-690 10.814	 1.265

'	 COUNT - GAIN • L + OFFSET

COUNT - 0-255
GAIN - COUNT/mwcm-= ym 'str-'

L - SCENE RADIANCE

OFFSET - 0-255

Table 2.

Maximum Cluster Radius (R) Anrl Minimum Between-Cluster

Distance (D) Used To Classi. y The TM and MSS Imagery

TM	 MSS

R .903	 .580

D 1.806	 1.160
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Table 3.

Landsat TM and MSS Classification
Accuracies For All Water Areas

5 SAV
Crown ---------- ------ Confidence --------------- -

Cover Sensor 0-255 25-505 50-755 75-1005

0-10 TM 100.0 0.0 0.0 0.0

Mss 97.3 2.7 0.0 0.0

10-40 TM 72.1 17.5 9.2 1.2

MSS 76.2 8.3 15.5 0.0

40-70 TM 100.0 0.0 0.0 0.0

MSS 92.4 7.6 0.0 0.0

70-100 TM 98.5 1.2 0.1 0.2
MSS 96.7 1.6 1.0 0.5

Table 4.

Landsat TM and MSS Classification Accuracies
For Water Areas Less Than 6 Feet

5 SAV
Crown ---------- ------ Confidence --------------- -
Cover Sensor 0-255 25-505 50-755 75-1005

0-10 TM 100.0 0.0 0.0 0.0
MSS 97.3 2.7 0.0 0.0

10-40 TM 72.1 17.5 9.2 1.2

MSS 76.2 8.3 15.5 0.0

40-70 Tm 99.9 0.1 0.0 0.0

MSS 82.9 17.1 0.0 0.0

70-100 TM 53.6 16.7 10.0 19.7
MSS 55.9 15.7 15.1 13.3

''. d
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REMOTE RECONNAISSANCE OF SUBMERSED AQUATIC
VEGETATION: A RADIATIVE TRANSFER APPROACH

Steven S. Ackleson
Vytautas Klemat

College of Marine Studies
University of Delaware
Newark, Delaware 19711
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1. INTRODUCTION

This research is concerned with assessing the effectiveness of
LAADSAT TM and MSS sensors for detecting submerged aquatic vegetation
(SAV). We approach the problem from a theoretical standpoint in which
we simulate volume reflectance from SAV under a variety of conditions.
Here, we focus upon the spectral and radiometric qualities of TM bands
1, 2 and 3 and MSS bands 4 and S.

2. BACKGROUND

The vast majority of remote sensing research involved with detecting
surface features addresses the problem Ir y a purely' stochastic fashion.
Typically, computers are used to generate categories within digital
multi-band data based upon spectral signatures. Signatures may be
derived either -manually by selecting subsets of data-that correlate.with
ground observations or by instructing the computer to group similar
signatures. The image is then classified by statistically assigning
each pixel to one of the categories. These techniques are nonparametric
in the sense that the classifier makes no assumptions about the physical
characteristics ofsurface -features. Under certain conditions, e.g.
large, homogeneous surface features relative to the spatial resolution
of the sensor, the nonparametric approach has been very successful.
Numerous examples are available in the literature and Moik (1980) gives
a good overview of the subject.

In a parametric approach, the researcher attempts to predict upwelling
radiance at an airborne or orbiting sensor by modeling radiative transfer.
The problem becomes significantly more complicated because the researcher
requires knowledge of the !,.nsmittance and reflectance characteristics
of the surface feature as wel l as the atmosphere. The advantage of the
parametric approach is that the researcher gains valuable insight for

interpreting observed radiance changes in the imagery.

3. METHODOLOGY

3.1 Spectral Assessment

Radiative transfer theory 1s used to model upwelling radiance that
would be re;g1ved by LANDSAT TM and MSS viewing a hypothetical estuarine

?resented at the Third L .idsat-4 Workshop, NASA Goddard Space Flight
Center, Greenbelt, MD, 6-7 December 1983.

It



environment, shown in Figure 1. The environment is composed of a clear
maritime atmosphere, an optically shallow estuary of either clear or
turbid water, and three possible bottom types: vegetation, sand or mud.

3.1.1 The Atmosphere

A clear maritime air mass is selected and is described by Guttman
(1968). Using solar irradiance data (Gast et al., 1965) as input, solar
and sky irradiance is calculated at sea level as well as path radiance
that would be received by $n orbiting sensor. These calculations assume
a solar zenith angle of 50 .

3.1.2 The Water Column

Irradiance reflectance of the water  column and bottom is calculated
using a quasi-single scattering model developed by Philpot (1981).

RI X- (1-e- Kid) 
♦ 
Ab

e- Ktd

t,

Where	 RI	 irradiance reflectance of the water and bottom,

Bd s irradiance batkscatter coefficient,

Kt n total irradiance attenuation coefficient (the sum of the
attenuation coefficients for upwelling and downwelling
irradiance),	 -

d n water depth,	 #

Ab = irradiance reflectance of the bottom.

Equation (1) is used, at the expense of slightly lover accuracy,
rather than a two-flow or Monde Carlo approach because the two necessary
terms, B and K are easily calculated from simple field measurements	 i
availabl g in th Iiterature and the amount of computer time required
is relatively small.

The water column is assumed to be vertically homogeneous and the
water surface calm and flat. Two very different water qualities are
considered; clear ocean water and turbid fresh water. Measurements
representing clear oceanic water are documented to Tyler et al. (1912).
Measurements representing very turbid water were made in San Vincente,
a man-made lake northeast of San Diego, and are documented in Tyler
and Smith (1910). Calculated values of Bd and Kt for Loth water types
are shown in Table 1.

3.1.3 The Bottom Types

Three different reflectance profiles are selected from the
literature to represent a submerged plant canopy, sand and mud. The
spectral reflectance of each bottom type is shown in Figure 2. .

-2-
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3.1.4 Upwelling Radiance Above the Earth

The upwelling radiance that would be received by an orbiting sensor.
is calculated as:

Los .(HoRI + PaLd I To + L  9	 (2)

Los = upwelling radiance at the orbiting sensor,

Ho = the combined effects of the atmosphere and air/water interface
upon radiance reflected from the water,

RI = irradiance reflectance of the water and bottom,

Pa = Fresnel reflectance of downwelling radiance at the water surface,

Ld•= downwelling sky radiance,

To = optical thickness of the atmosphere in the zenith direction, and

Lp = atmospheric path radiance received . by the sensor.

Upwelling radiance values are calculated every 10 nin over the wave-
length range 450 nm to 700 ran. Radiance values are then summed over

	

TM bands 1 (450-520 nm),-2(520-600 nm), and 3 (630-690 nm) and MSS bands 	 -
4 (500-600 nm) and 5 (600-700 nm).

3.1.5 Spectral Quality Index

A spectral quality index i; defined based upon the'work of Lyzenga
and Polcyn (1978) as:

where:

LT = upwelling radiance representing the submerged plant canopy, and

LB = upwelling radiance representing a background of sand or mud.

Equation (3) is quite similar to the equation for apparent contrast.
Relative values of SQI between bands indicate relative effectiveness
in detecting submerged plant canopies.

3.2 Radiometric Assessment

The radiometric resolutions of TM bands 1, 2 and 3 and MSS bands
4 and 5 are compared for the same cases discussed in the previous section.
Upwelling radiance at satellite altitude calculated for each band is

converted to count values using calibrations taken from Barker et -al..

-3-	 ,



(1983) for TM sensors and Bauer (1980) for LANOSAT-3 MSS sensors
(see Table 2 for conversion constants). Apparent contrast is then
calculated between target and background signals as:

AC • ICT - CBI

where

CT • count value calculated from target signal, and
CB s count value calculated from background signal.

3.3 Quick-Look Evaluation of TM Data

An EROAS 400 microcomputer is used to enhance and classify a TM
image of Broad Creek, Maryland. The image was generated on November 2,
1982. The scene is classified using an unsupervised clustering routine.
The classified scene is compared with aerial photography of the area
collected on August 2, 1982. Of primary interest in the scene is a
me$ium size SAV bed loca^ed on the west bank of Broad Creek, latitude
38 44'20"N, longitude 76 15 1 25"W. The SAV was photographed from a
Cessna 174 at low altitude using a hand-held camera and Kodak Pan-X
black and white film..

4. RESULTS

SQI values are calculated for clear water overlying a sand bottom,
clear water overlying -a mud bottom, turbid water overlying a sand bottom,
and turbid water overlying a mud bottom. - The results are shown-in
Tables 3-5 respectively. In all cases, when the water depth is optically
shallow TM band 3 and MSS band 5 are most effective in detecting the
submerged vegetation.- This is intuitively correct since the inherent
contrast between the vegetation and both the sand and mud is a maximum
in these two bands. In clear water, as the water depth increases, the
optimum band shifts from TM band 3 and MSS band 5 to TM band 1 for
both bottom types. Here, the attenuation of bottom signal is less
in TM band 1 than in TM bands and MSS band 5. In turbid water the
relative effectiveness of each band is similar for all depths considered.

Spectrally, MSS band 4 is quite similar to TM band 2 and MSS band 5
is similar to TM band 3. Nevertheless, some unanticipated changes in
relative SQI values between these bands are observed with respect to
increasing water depth. Shown in Table 5, MSS band 4 is slightly more
effective than TM band 2 in discriminating between submerged vegetation
and sand at 0.5 meters. When the water depth increases to 1.5 meters,
TM band 2 becomes slightly more effective. Similar results are seen
in Tables 2 and 3 between TM bands 3 and MSS band 5.

In most cases, SQI values decrease with increasing depth. This
also seems intuitively correct as the apparent contrast decreases with
either increasing attentuation or increasing pathlength. In Table 4,
SQI decreases in TM band 2 between 0.5 and 1., meters and then increases

-4-



between 1.5 meters and 10.0 meters. To understand what is happening here
it is necessary to know something about the variation in the optical charac-
teristics of the water and the bottom types across the band. Figure 3
shows the spectral reflectance of the vegetation and mud within TM band 2.
Whereas the largest reflectance from the vegetation occurs in the shorter
wavelength portion of the band, the reflectance of the mud increases toward
the longer wavelength region. The average reflectance of the mud is
slightly larger than the vegetation so that in the absence of a water
column, the mud would appear brighter. Also shown in Figure 3 is the total
attenuation coefficient of the clear ocean water which increases signifi-
cantly toward the longer wavelength region of the band. Under these
circumstances, the signal from the mud decreases rapidly with increasing
water depth than does the vegetation signal. Figure 4 is a plot of SQI
without taking the absolute value of the numerator. Values were calculated
for several depths between 0 and 20 meters. In very shallow water, the
signal from the mud is greater than the signal from the vegetation and the
index takes on a negative value. At some intermediate depth slightly greater
than 1.0 meters, the two signals are equal and SQI is zero. At still
greater depths the vegetation appears brighter than the-mud and SQI values
are positive. As the depth becomes very deep, both signals take on the
value of optically deep water and SQI again falls to zero, - .This emphasizes
the-importance of making optical measurements within .natural waters at.

appropriate spectral resolutions. If all optical measurements were made*
with a bread band radiometer representing TM band 2, the intermediate zero
contrast would never have been noticed and the model predictions of up-
welling radiance would have been in gross error.

Also shown in Tables 3-6 are apparent contrast calculations in which
upwelling radiance is converted to count values. The results simulate the
absolute count. difference within the satellite image between pixels repre-
senting the SAY and those representing the surrounding unvegetated sand or
mud. For the case of clear ocean water, TH band 1 offers the best discri-
mination between the SAV and the background, both sand and mud. This
result does not agree with that of the SQI analysis, the reason being that
each sensor has a unique counts..- to-radiance calibration. In Table 2, the
higher the sensor gain, the mbre sensitive 1:A s to changes in reflectance.
Thus, even though spectrally TM band 3 is better than TM band 1, the larger
gain of TM band 1 more than makes up for the difference. This same effect
occurs between TM bands 2 and 3 and the spectrally similar MSS bands 4 and
5. In each case the gain is larger for the TM bands, making them signifi-
cantly more efficient in detecting the SAY.

A TM band 5 image of Broad Creek, Maryland is shown in Figure 5a.
The image was generated on November 2, 1933. Figure 5b shows an aerial
photograph of a SAV bed located along the west shore of Broad Creek. The
SAY appears as a dark area adjacent to the shoreline on an otherwise bright
bottom. The photo was taken on August 2, 1982, three months prio r to the
TM image. The TM image is classified with an unsupervised clustering
routine using an ERDAS 400 microcomputer. The classified image is shown
in Figure 6. The area classified as SAV correlates well with that shown
in the aerial-photography..

A
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5. CONCLUSIONS

Tht effectiveness of an orbiting sensor in discriminating spectrally
between submerged features is a function of the inherent contrast between
the submerged features and how strongly the bottom signal is attenuated
by the water column. In optically shallow water the inherent contrast
is the controlling factor. Thus, the optimum sensor band is that which
correlates with the greatest inherent contrast between the submerged
features. In optically deeper water, the optimum sensor band is that
for which the water column is most transparent.

In the clear ocean water the optimum band for detecting vegetation
on a sand or mud bottom is shown to change with the optical depth of the
water. In the turbid San Vicente water the optimum band in optically
shallow water remains the optimum band in optically deeper water.

Under certain conditions the spectral quality index will decrease
to zero for some intermediate depth and then increase for yet deeper
depths. This could have a significant impact upon how changes in water
reflectance should be interpreted and can only be predicted with detailed
knowledge of the spectral variatioir of optical parameters across the
sensor band.

Radiometric calibration is.shown to:be a.dominent factor in-deter-
mining which 7M or MSS band will be optimum-for detecting a submerged
feature such as SAV. Sensors with higher gain settings in general
produce data with more information. The gain built into the TM sensors
are_significantly higher than those of the MSS, giving TM data a -clear
advantage for detecting submerged features. In several cases, a band
is found to be optimum for detecting SAV in a radiometric sense and yet
sub-optimal in a spectral context.

The Thematic Mapper appears to be useful for detecting SAV in the.
case of Broad Creek, Maryland. A nonparametric classification of a
November 2, 1982 image clearly discriminated between SAV and the sur-
rounding unvegetated bottom.

-6-
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TABLE 2

Counts/Radiance Conversion Constants for LANDSAT-4 TM bands 1, 2 and 3
(Barker et al., 1983) and LANDSAT-3 MSS bands 4 and 5 (Bauer, 1980).

Dynamic Range
*	 **

TM 1	 -0.152	 15.842	 15.78

TM 2	 -0.284	 -	 30.817	 8.10

TM 3	 -0.117	 23.403	 10.62

MSS 4	 0.4	 22.0	 5.79

MSS 5	 0.3	 17.5	 7.27

* Largest radiance value observed for a count value of 0.
** Smallest radiance value observed for a TM count value at 255 or an MSS

count value of 126.



Table 3

SQI VALUES* AND APPARENT CONTRAST** BETWEEN SAV AND SAND FOR
THE CASE OF CLEAR OCEAN WATER

d-0.5m d-1.5m d-IO.Om
Band SQI I o e

TM 1 143.8 16.3 128.9 14.4 49.2 5.2
TM 2 101.4 5.6 79.9 4.3 -	 12.5 0.6
TM 3 235.8 14.0 120.7 6.0 0.1 0.0

MSS 4 108.2 3.7 88.1 2.9 18.6 0.6
MSS 5 214.1. 8.2 117.4 3.8 0.5 0.0

* Units - (mw/cm2 -str-nm) 112 x 10-3
** Units - Counts

Table 4
SQI VALUES* AND APPARENT CONTRAST** BETWEEA SAV AND MUD FOR

THE CASE OF CLEAR OCEAN WATER

d-0.5m d=1.5m d-10.0m
Band SQI AC SQI AC SQI oC

T11	 1 70.5 7.5 62.9 6.7 23.4 2.4
TM 2 2.8 0.4 1.8 0.1 4.2 0.1
TM 3 151.8 7.9 74.5 3.4 0.01 0.0

MSS 4 13.23 .6 8.5 0.5 0.2 0.1
MSS 5 127.5 4.3 67.9 2.0 0.2 0.0

* Units - (mw/cm2 -str-nm) 1/2 x 10-3
** Units - Counts
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Table 5

SQI VALUES* AND APPARENT CONTRAST** BETWEEN SAV AND SAND
FOR THE CASE OF TURBID SAN VICENTE WATER

d-0.5m d-1.5m d-1O.Om
Band SQI	 AC o I o

TM 1 69.4	 7.3 31.5 1.4 14.4 0.0
TM 2 70.6	 3.7 42.8 1.2 25.6 0.0
TM 3 174.3	 9.9 88.9 2.1 43.3 O.c

MSS 4 71.7	 2.3 42.1 0.7 24.5 0.0
MSS 5 154.8	 5.8 83.1 1.3 42.1 0.0

* Units - (mw/cm2-str-nm) 1/2 x 10-3
** Units - Counts

Table 6

SQI VALUES* AND APPARENT CONTRAST** BETWEEN SAV AND MUD
FOR THE CASE OF TURBID SAN VICENTE WATER

d-0.5m d-1.5m d-IO.Om
Band SQI oC SQI AC SQI AC

TM 1 70.5 3.3 62.9 0.6 23.4 0.0
TM 2 3.1 0.3 1.6 0.1 0.8 0.0
TM 3 109.0 5.6 53.5 1.2 25.5 0.0

MSS 4 8.5 0.4 4.3 0.1 2.2 0.0
14SS 5 91.4 3.0 46.7 0.7 23.3 0.0

* Units - (mw/cm2-str-nm) 1J2 x 10 3
** Units - Counts

-11-
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REMOTE SENSING OF COASTAL WETLANDS BIOMASS

USING ThEMATIC MAPPER WAVEBANDS

Michael A. Hardisky

Vytautas Klemas

College of Marine Studies

University of Delaware

Newark, Delaware 19111

ABSTRACT

Spectral data, simulating thematic mapper bands 3, 4 and 5 were

gathered in salt and brackish marshes using a hand-field radiometer.

Simple regression models were developed equating spectral radiance

indicies with total 11 ve biomass for S. alterniflora in a salt marsh -and
for a variety of plant species in a brat s marsh—. Models were then
tested using an independent set of data and compared to harvest estimates

of biomass. In the salt marsh, biomass estimates from spectral data

were similar to harvest biomass estimates during moat of the growing

season. Estimates of annual net aerial primary productivity calculated

from spectral data were within 21% of production estimated from harvest

data. During August, biomass estimates from spectral data in the brackish

marsh were similar to biomass estimated by harvesting techniques. At

other times during the growing season, spectral data estimates of biomass

were not always comparable to harvest biomass estimates. Reasonable

estimates of wetlands biomass are possible during the peak of the growing
season (August) using spectral data similar to thematic mapper bands 3.

4 and 5 gathered with hand-held radiometers.

INTRODUCTION

Basic to the understanding of wetland function and value is the

quantification of energy fixation. Reduced carbon compounds comprising

macrophytic biomass provide the energy necessary to maintain the hetero-

trophic organisms which feed upon them. Aboveground biomass represents

only a portion of total net primary production (belowground production

can also be substantial) however, the fixed carbon in this biomass is

the surplus available to heterotrophic organisms and is readily detected

with remote sensing devices.

Presented at the Landsat-4 Science Characterization Early Results

Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 23-24

February 1984. NASA Conference Publ. IV:251-269.



Many salt marshes on the eastern coast of the J.S. are dominated by

a single plant S ap rtina alterniflora, Loisel. (Reimold 1977). S.

alterniflora biomass can vary ?rom near 100 to over 3000 gdw m-'Z—depending

upon substrate type, soil salinity, inundation frequency or other edaphic

factors. As interstitial water salinity decreases to the 18-15°/00
range, S. alterniflora is gradually replaced by a variety of plant

species.— In general, the lower the salinity, the greater the diversity

of the resident plant population. The monospecific gramineous canopies
of the salt marsh are transformed to brackish marsh canopies comprised

of mixtures of gramineous, broadleaf and leafless plants. Spatially and
temporally the canopies encountered in the brackish system are complex

and dynamic. The morphologic diversity of the plant corrunity produces

an equally diverse spectral signature.

The study described herein was designed to develop simple regression

models equating spectral radiance indicies with plant biomass. The
radiance data were spectrally similar to thematic mapper bands 3, 4 and
5 and have been suggested as being superior to MSS wavebands for vegetation

monitoring (Tucker 1978). Our first objective was to use these models
to predict biomass and net primary productivity for a sale marsh and to

predict biomass for a brackish marsh usin g ^ round gathered spectral

radiance data. Our second objective was 	 -ess the validity of our

biomass estimation by comparing the spectrally estimated biomass values

with biomass estimates obtained by traditional harvest t,^chr.iques.

METHODS

Salt Marsh

A portion of the Canary Creek salt marsh in Lewes Delaware was
selected for study (Figure 1). The marsh was dominated by monospecific

stands of S. alterniflora with relatively small areas of Distichlis

s icata (L.jGreene-6 ccassionally, Salicornia euro --ea L. --or L^ nmo ium

sp. occurred mixed with S. alterniflora. Six transects extending room

the creek edge to the upT—and were esta lished. The transects were

spaced approximately 210 meters apart and stations were designated every
30m along each transect. A total of 40 stations for the whole marsh
were established. By establishing stations in a systematic manner along

transects, we sampled a representative cross section of S. alterniflora_
height forms occurring within the marsh. Beginning on 15 May 1981 and

continuing every three weeks until 9 OctoDer 1981, four stations were
selected, using a table of random numbers, from each transect. For each

of the eight sampling dates, 24 stations were sampled yielding a total

of 192 for the season.

Brackish Marsh

A brackish marsh near the headwaters of Old Mill Creek at Lewes,

Delaware was selected for study (Figure 1). The interstitial water

salinity varied from approximately 15-18"/,o at the downstream end to

about 12-10 0 1,, at the upstream end. Plant species comprising the plant

community changed with apparent soil salinity. Four transects extending
from the creek edges to the upland were established 180 meters apart
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along the long axis of the creek. Stations were spaced at 30m intervals

along each transect. A total of 29 stations were designated in the

marsh. The marsh was sampled 3 times during the growing season (June,

August, September) at approximately 6 week intervals. At each sampling

date, 4 stations were selected using a table of random numbers from each

transect yielding 16 stations and a season total of 48.

Spectral Radiance Data Collection

Before harvesting, a GSFC Mark II hand-held radiometer (Tucker et

al. 1981a) was used to measure canopy radiance directly over each area
to be harvested. The radiometer contained three wavebands spectrally

configured with interchangeable interference filters to match bands 3,

and 5 of the Landsat-4 thematic mapper. The sensor head housed a red

band (0.63 - 0.69 vm, RED) sensitive to chlorophyll concentration, a

near infrared band (0.76 - 0.90 um, NIR) sensitive to plant tissue

structure or biomass and a middle infrared band (1.55 - 1.75 pm, IR)

sensitive to leaf moisture. Data were recorded simultaneously for all

three bands.

No more than 5 days prior to the actual harvest, spectral radiance

was determined for each plot. The radiometer was leveled approximately

1.5 meters above the top of the plant canopy. In the brackish marsh a

wooden step ladder was employed to achieve proper instrument height.

The radiance was measgred 3 times over each plot. Radiance data were

not collected under cloudy or very windy conditions and were always

collected within 2 hours of solar noon. Radiance data were collected

during low tide, however, there were occasions when small amounts of

tidal water remained pooled on the marsh. Standfng water- Was avoided

whenever possible due to potential specular reflectance from the water

surface.

Spectral radiance data were transformed and expressed as a normalized

difference of two bands as outlined by Kriegler et al. (1969) and Rouse
et al. (1973). The red and near infrared radiance values were combined

in the following runner:

VI = NIR - RED

where VI is the vegetation index, NIR is the near infrared band radiance
and RED is the red band radiance. A similar combination of the near

infrared and middle infrared bands was performed (middle infrared substituted

for RED in the above expression) and termed the infrared index (II).
The infrared index is used here with the understanding that the near

infrared and the middle infrared bands are spectrally different and that

normalization in this manner may not be totally valid since adjacent,

spectrally similar bands were assumed for this transformation (Kriegler

et al. 1969). Index values were preferred to raw radiance data because

the normalization procedure tends to compensate for changes in solar
irradiance caused by seasonal changes in solar zenith angle and/or

atmospheric conditions (Tucker et al. 1979a).

IV-254
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Harvesting Procedures

After collection of radiance data, all vegetation-(including standing
dead material) within a 0.25 m2 frame was clipped at soil level at each
station. The plant material was bagged and returned to the laboratory

for processing. A 1/3 subsample (by wet weight) was drawn from the salt

marsh samples and sorted into live and dead components. The brackish

marsh samples were sorted completely by species, then only plant species

with a large volume of material were subsampled and finally live and

dead components determined for each species. Most plants in the brackish
marsh samples contained little attached dead so the majority of the dead
material was considered as a composite of the whole sample. The subsampling

procedure for both marsh types greatly reduced processing time. We felt

that a representative subsample was sufficient to determine relative

proportions of live and dead tissue and by retaining the entire 0.25 m2

sample for biomass determination, we preserved the best estimate of

biomass, given the oftentimes spatially heterogeneous distribution of
biomass within the area sampled. Proportions of live and dead tissue
determined from the subsample were then extrapolated to the entire

biomass sample. All plant material was dried at 60°C to a constant
weight, weighed to the nearest 0.lg and expressed as grams dry weight

per square meter (gdw M-2).

RESULTS

Salt Marsh - Biomass Estimation

Regression models equating S. alterniflora biomass and spectral

radiance indicies were developed Suring the 980 growing season (Hardisky

et al. 1983a). These models included short and tall form S. alterniflora-

sampled from June through November using the hand-held radiometer.

Table 1 lists the models for the vegetation and infrared indicies. To
estimate live and dead biomass, one solves for live .leaf biomass (L) in

the first equation, for total live biomass (live leaves and stems, T) in

the second equation and then substitutes the L value (from equation 1)

into the last equation solving for dead biomass (D). Through this

sequence, the necessary parameters for annual net aerial primary produc-
tivity estimation (total live biomass and dead biomass) are calculated.

Figure 2 depicts biomass estimates from harvesting and computed
from the vegetation index for S. alterniflora. For live and total

biomass, the predicted values were simi ar to the harvest values throughout

the year. Live biomass estimates using the vegetation index ter '?d to
be lower than harvest estimates during the first half of the growing
season and were higher than harvest estimates during the latter half of

the growing season. reak biomass was attained in early August at which

time canopy development would be the fullest. We would expect the
greatest proportion of live biomass conpared to dead biomass to occur at

this time and for the greatest amount of live tissue to be in the upper

portions of the canopy. This may have contributed to the higher vegetation
index biomass estimates seen at peak biomass and thereafter. Dead

biomass did not vary greatly over the season (from 260 to 400 gdw M-2)

however, decomposition of carry-over dead material (from previous growing

IV-x'55



season, high in the canopy) and the concurrent addition of dead material

from immature culm mortality and leaf senescence (low in the canopy) can

change the relative vertical position of the dead biomass without large

changes in biomass thereby altering reflectance from this component. It
would seen reasonable that this change in the location of dead material
contributed to the lower live biomass predictions in the first part of
the season (when more dead material was in the canopy) and to the higher
live biomass predictions in the latter part of the season (when less
dead material was in the canopy).

Table 1

REGRESSION MODELS FOR PREDICTING S. ALTERNIFLORA BIOMASS

Coefficient
of Determination

Regression Model	 (r2)

VI = .382 + .068 NO	 0.75

VI = .149 + .096 ln(T)
	

0.64

VI =	 .760 + .055 ln(L/D) 0.88

II =	 .178 + .104
-

ln(L}
------------	 -------

0.87

II = -.185 + .148 ln(T) 0.76

Ii =	 .752 - .078 ln(L/D) 0.88

L - Live leaf biomass: T - Total live biomass; D - Dead biomass
Units on all biomass = grams dry weight per meter squared
n for all regression models - 96

VI = Vegetation Index; II = Infrared Index

Harvest and infrared index estimates of live and total S. alterniflora

biomass are compared in Figure 3. The infrared index estimai —es--oT live
biomass were very close to the harvest estimates during the early part
of the growing season. After peak biomass, the infrared index estimates
of live biomass were lower than harvest estimates. The reasons for the

apparent underestimates at the end of the growing season are not clear,

however, we would postulate that the lower water content of the plant
tissue due to tissue maturity and increased interstitial water salinity

at this time in the growing season would cause an increase in the middle
infrared reflectance resulting in lower infrared index values. Overall

the infrared index and vegetation index estimates of biomass were similar.

Although the mean biomass estimates from harvesting and from radiance

indicies were similar, considerable variability existed for individual

measurements during some parts of the growing season. Figure 4 presents
coefficients of determination (r 2 ) between harvest estimates and vegetation

or infrared index estimates of live (a) and total (b) biomass. High r2

W:
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values indicate good linear association between individual harvest and

radiance index estimates of biomass. Low r 2 values indicate considerable
variation existed for some samples between the two biomass estimates.

From May through June, the most disagreement between harvest and radiance

index biomass estimates existed. August was the best time period for

agreement of the biomass estimates with the latter part of the growing

season as a whole being better than the first part. The harvest and

radiance index estimates of live biomass were always in better agreement

than the total biomass estimates. Harvest and radiance index biomass

means in Figures 2 and 3 were generally very similar. This suggests

that during those periods when low r 2 values existed between harvested

and predicted biomass, the amount of overestimation and underestimation

were similar among the 24 samples, yielding means which were comparable.

When using radiance index values for biomass prediction, one should

scrutinize the results from individual measurements to assure that each

estimate is reasonable, particularly early in the growing season.

-- —VEGETATION INDEX ESTIMATE
HARVEST ESTIMATE

o • TOTAI_ BIOMASS
o n LIVE BfOMASS	 J\

f

MAY	 JUNE	 JULY I	 AUG
	

SEPT !OCT
TIME (1981)

Fig. 2 Vegetation index and harvest estimates of S. alterniflora

bior.ass over the growing season. Bars representing I stan ar

error of the mean are shown whenever they exceed the size of the

point symbol. Points are slightly offset to improve readability.
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HARVEST ESTIMATE
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MAY ' JUNE ' JULY '	 AUG
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Fig. 3 Infrared index and harvest estimates of S. alterniflora

biomass over the growing season. Bars representing 1 standand

error of the mean are shown whenever they exceed the size of the
point symbol. Points are slightly offset to improve readability.

Salt Marsh - Productivity Estimation

Using the mean biomass estimates shown in Figures 2 and 3, annual

net primary productivity was computed for the S. alterniflora salt

marsh. We employed established production calcu ation tec ntques used

widely in salt marsh systems (Table 2). There is some discussion as to
the adequacy of these techniques and we recognize the shortcomings of
each. However, these techniques are widely used anj will yield values

comparable to other studies. Linthurst and Reimold (1978) provide an
excellent comparison of various harvest techniques for estimating net

aerial primary productivity in estuarine marsh systems.

Annual net aerial primary productivity estimates for the Canary

Creek marsh are found in Table 2. The vegetation index estimate of

productivity was within 46 of the Smalley (1958) harvest technique and
no more than 216 different frog the other techniques. The infrared

index estimates of productivity were within 20; of the Smalley (1958)
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Fig. 4	 Coefficients of C=termination describing the
association between radiance index predictions of
biomass and harvest estimates of biomass over the
growing season.
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technique and were 4-5% different from the other techniques. The key to
the agreement between the productivity estimates computed from harvest
and radiance index data was the high correlation between predicted and
harvest. biomass during peak biomass (August). For all but the peak
standing crop method of production estimation, successive positive
increments in biomass are summed throughout the growing season, normally
culminating at the point of peak biomass. Therefore, the estimation of
peak biomass is the single most critical measurement in determining
annual production.

Table 2

ANNUAL NET AERIAL PRIMARY PRODUCTIVITY ESTIMATES

FOR SPARTINA ALTERNIFLORA IN CANARY CREEK MARSH

Remote Sensing Estimate

Method	 Harvest Estimate	 VI	 II

peak standing crop 517 600 489

Milner b Hughes	 (1968) 523 661 498

Morgan (1961) 517 600 497

Smalley (1958) 634 661 506

all - values are grams dry weight per square meter par year

VI - Vegetation Index; I1 - Infrared Index

Brackish Marsh - Model Development

Modeling the relationship between spectral radiance indicies and
live aerial biomass in brackish marsh plant communities required consid-
eration of diverse morphologic characteristics among plants residing in
the same community. To illustrate this point, Figure 5 shows the linear
relationship between vegetation index and live biomass for a variety of
wetland plants. Iva, !qjy9on^^um, and Solids represent broadleaf or

deciduous canopies and e^ rapid 	 ncreases in vegetation index for

relatively small changes in biomass. This characteristic suggests that
the spectral index can become saturated rapidly. Structurally, these
canopies maintain most leaf surfaces in the horizontal plane and generally
form a complete canopy cover which reduces or eliminates exposure of
dead components or soil background to solar irradiance. This combination
of canopy characteristics yields a very absorptive canopy in the red
region and a very reflective canopy in the near infrared region, thus
the high vegetation index relative to the amount of live biomass present.

The opposite extreme to the broadleaf canopy would be the leafless
canopies represented by Salicornia and Scir us. Both Salicornia vviin9inica-
and S_cirpus olne 1 possess erect, leafless stems with most green t ss ue
to t eh vertical plane and primarily soil background and dead plant material
in the horizontal plane. Normally these canopies are very open with soil
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surface characteristics potentially contributing greatly to the
observed spectral radiance.

The third canopy type represented in Figure 5 1s the gramineous canopy
type of SS artlna and Tif ha. S artina alternlflora exhibits alternate
leaves a on^g tFie lengt^i o^ the stem whereas __^ ►̂►̂ â an^ust1fo11a has basal
leaves. Both plants form canopies with port o^of leave— s in the horizontal

and in the vertical plane. S. alterniflora exhibits a broad range of

canopy configurations as a r—esult of is w de environmental tolerance
limits. Both plant canopies can maintain substantial Quantities of dead

material within the canopy. The amount of live leaf tissue determines

to what degree dead material and soil background will influence spectral
reflectance. Theoretically, the occurrence of flat leaves (portions of

which may be horizontal) in the gramineous canopy would place them

somewhere between the broadleaf and leafless canopies in terms of an
increase in vegetation index value for an increase in biomass (i.e. an

intermediate slope). In practice this does not occur because the measured

vegetation index represents the composite of reflectance from vegetation

(live and dead) and the soil. In the case of the gramineous canopy, the
dead vegetation and soil are oftentimes well illuminated and contribute

significantly to the measured vegetation index. The net effect is a

lessening of vegetation index increases with increasing biomass.

0	 250

LIVE BIOMASS (gdw m-2)

Fig. 5 Wnpari-.on of the relationship between vegetation index values
and amounts of live biomass for a variety of wetland plants. Iva,
Polygonum and Solid!go represent broadleaf canopies, TYyPph'aa and ^artina

Cashed Ines) represent gramineous canopies and Salicor nia and

Scir us represent leafless canopies.
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Brackish marsh plant communities are often composed of numerous

plant species with morphologies represented by each of the groups discussed.

The problem of equating spectral data with live biomass becomes a function

of the species composition of the community in question. At present, we
lack sufficient data for modeling specific mixtures of the 3 canopy

types. So as a firsi attempt at equating spectral radianc- i ndicies and
live aerial biomass, we combined data from each e l 'he mo*,..ologic

groups into a single model. These data were gathered fron stands of
Typha an ustifolia, S artina alterniflora, Scir us olneyi and a broadleaf
mixture normally om Hate by cn da cannabina or HiPscus moscheutos.
The areas were sampled monthiy from May through August with rad^a cna and
biomass data being gathered identical t-) the trackish r r,arsh samples

described in the methods.

Brackish Marsh - Biomass Estimation

The brackish marsh sampled for biomass estimation was diverse in

terms of plant species and seasonally dynamic with respect to dominance.

Table 3 lists the abundance (expressed as a percent of the total number
of samples in which the olant species Occurred) and dominance (expressed

as a percent of the total number of samples in which the plant species

was dominant in terms of biomass) of each plant species encountered

during the study. The three most abundant species were Spartina patens,

Eleocharis sp. and Acnida cannabina. Grass species dominated most

samples wring all threesamplingperiods. There was a slight increase

in dominance by broadTeaf species in August when most broadleaf plants

reached peak biomass.

Simple and multiple regression models equating total live biomass

(all species within sample) and the spectral radiance indicies with

other canopy descriptors are found in Table 4. Multiple regression
models were included for comparison because the percent of total live

biomass which was broadleaf biomass (B) and total live biomass expressed

as a percent of live plus dead biomass (P) were consistently implicated

as important pararm,^ters for best fit models. Considering the very

different spectrar characteristics of broadleaf canopies relative to the

gramineous and leafless canopies, and the potential importance of dead
vegetation in determining spectral radiance in gramineous and leaf'?ss

canopies, it was not surprising that these additional parameters (B,P)

significantly improved the linear fit (r 2 values) of the models.

Harvest and spectral radiance index estimates of total live biomass
for the entire growing season are compared in Table 4. In the case of

the vegetation index, the inclusion of B and P reduced the accuracy of

the bior.ass esti mate, whereas with the infrared index these two parameters

apparently improved the biomass estimate but not to any significant

degree. The annual live biomass means predicted with radiance index

data were very similar to the live biomass estimated by harvesting. A

paired T-test suggested that most harvest and predicted means were not

statistically separable at the 0.05 level.
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Mode la

T = (3278) VI - 1939

T = (4319) VI - (7.12)B - 2682

T = (4025) VI - (7.16)6 + (1.85)P - 2562

T = (3811) II - 2181

T = (4242) II - (4.06)B - 2402

T = (3902) II - (4.41)6 + (2.35)P - 2294

Annual Live Biomass (gdw m -2)

Harvest 	 Predicted	 Difference

691(68) 647(33) 45

6 c"1(68) 550(49) 142*

691(68) 553(49) 138*

691(68) 721(45) 36

691(68) 680(51) 12

691(68) 674(52) 18

Table 4

.S EQUATING RADIANCE INDICES

MARSH CANOPY PARAMETERS.

.a_

9M

r,

a T - total live biomass (gdw m -2 ), VI = vegetation index, II = infrared index,

B = live biomass of broadleaf species expressed as a percent of total live biomass,

P = total live biomass expressed as percent of total live and dead biomass,

n for all models is 57.

b Values are the mean and one standard error, in parenthesis, of 47 samples.

Difference = the numerical difference between the harvest and predicted means.

An asterisk indicates the difference between means was statistically significant

at the 0.05 level.

The regression models were then used to estimate biomass at each of

the 3 sampling dates (Table 5). Although there was good agreement

between annual harvest and predicted biomass means,, substantial deviation

was noted over the growing season. Vegetation index biomass estimates

were very good during June and August but unacceptable during September.
The infrared index only produced acceptable biomass estimates during

August. The failure of the models to yield good biomass estimates
during September was probably related to the rapid senescence of the
marsh plants at this time. The brackish marsh, unlike the salt marsh,

contains annual broadleaf plants which after seed production senesce
rapidly. The larger amount of dead vegetation in the canopy and the

senescence of broadleaf leaves altered the canopy spectral characteristics
sufficiently to invalidate the predictive models at this time of year.

The infrared index estimates of biomass were high in June and low in
September. The high percentage of moisture in young, productive leaf

t

	

	
tissue (June) as opposed to the low percentage of moisture in dead or

senescing leaf tissue (September) probably contributed to the observed

fluctuations in biomass estimation for the infrared index.
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DISCUSSION

Other investigators have found good correlations between marsh
plant biomass and reflectance in the red and near infrared spectral

regions (Drake 1976, Bartlett and Klemas 1981). We have reaffirmed this
relationship for S. alterniflora using thematic mapper bands 3 and 4.
Previous studies tin salt marsh 	 (Buda and Milton 1982), pasture land
(Curran 1982) and in agricultural vegetation (Tucker et al. 1981b)
suggest a strong relationship between plant biomass and the combination
of red and near infrared spectral data. These studies also imply that
biomass could be predicted using spectral data. Very few investigators

have actually tested models equating biomass and spectral data using a

data set independent of the data set used to establish the model.

Jensen (1980) working with the salt marsh shrub (Halimione portulacoides)

and Curran (1980) working with pasture vegetation av^e done this with

reasonable success. Our data also suggest that spectral radiance models

are useful for nondestructive estimates of salt marsh biomass.

The brackish marsh regression models predicted biomass well during
the peak of the growing season. The models presented represent an
oversimplification of the complex interactions of live and dead vegetation,

horizontal and vertical leaf area index, and soil reflectance which are

compressed and treated as a single reflecting surface. Brackish marsh

canopies are normally much deeper and much more diverse in terms of

plant morphologies tha ►t salt marsh canopies. It is, therefore, very
encouraging wilier representatives of the 3 most common canopy types
measured in relatively pure stands can be combined into a regression

model which yields good estimates of biomass for mixed plant stands.

The hypothesis that plant morphology ( canopy - type) is more important ire
determining measured spectral radiance than consideration of each particular

plant species, appears to be valid. For example, TYP_ha canopies were
included as input to the predictive regression models, yet in the data

set used to test the model, no TYPha was present. On the other hand,
many plant species were found in- the test data set (notably S. patens,

Eleocharis sp., D. s icata and P. unctatum) which were not Fnc u e in

the mod 	 development data set. T e dissimilarities in species composition

between the model development and model testing data sets apparently had

little effect upon the outcome of live biomass predictions from radiance

indicies.

The vegetation index was usually a better spectral transformation

for biomass estimation than was the infrared index. The vegetation

index has been well established as a useful transformation for monitoring
vegetation (Tucker 1979, Tucker et al. 1979a,b) but the infrared index

is relatively new. Kimes et al. (1981) and Markham et al. (1981) were
among the first to work with the middle infrared band (TM5) using hand-

held radiometry. In both studies, they concluded that the middle infrared

band contained the same informat t;n as the red band. They did acknowledge

that their sampling precluded any water stress and that the middle

infrared band should undergo additional testing when changes in leaf

moisture were expected. More recent work by Hardisky et al. (1983b)

suggests that the infrared index may have moisture detection capabilities
and therefore, will probably be useful in wetland systems for discriminating

^l
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vegetation exposed to varying soil salinity conditions. We believe that
additional research must be conducted to determine the worth of the
infrared index for vegetation monitoring. The large seasonal variation
in biomass predictions in the brackish marsh by the infrared index
suggest moisture content or the moisture contrast between live and dead
vegetation may have contributed to the results. If our observations are
a result of canopy moisture differences, this would indicate a larger
seasonal fluctuation in canopy moisture relative to biomass than in
chlorophyll content relative to biomass. This could potentially be a
very useful tool in monitoring wetlands vegetation.

CONCLUSIONS

Regression models equating total live biomass and spectral radiance
indicies were developed and tested for salt and brackish marsh vegetation.
Comparisons of biomass predicted using spectral radiance indicies and
biomass estimated by traditional harvest techniques were very similar
for S. alterniflora biomass. The vegetation index was slightly better
for predicting biomass than was the infrared index. The best agreement
between predicted and harvested biomass occurred during August (at peak
biomass) with a considerable amount of variability at other times of the
year. Annual net aerial primary production estimates were also very
similar using either predicted or harvest biomass estimates.

Three morphologically distinct canopy types were identified in the
brackish marsh vegetation. Data gathered from broadleaf, gramineous and
leafless canopies were combined into a single regression model for
estimating brackish marsh biomass. The models provided similar estimates
of biomass compared to harvest estimates of biomass during June and
August for the vegetation index and only during August for the infrared
index. Percent broadleaf biomass and percent live biomass were identified
as being important parameters for determining total biomass with spectral
data. In practice, these additional parameters did-little to improve
live biomass predictions over the live biomass predictions using only
the spectral radiance index.

The thematic mapper bands 3, 4 and 5 used in this study successfully
provided the spectral information necessary for nondestructive biomass
estimates in coastal marshes. The ground-based radiometric technique
described can provide the data necessary for estimates of productivity
for some marsh systems. Spectral data gathered with hand-held radiometers
from low altitude aircraft and thematic mapper simulator data are presently
being tested using the models described in this paper. Preliminary
results indicate that with an atmospheric correction, the models work
well with spectral data gathered from higher altitude platforms. It
seems plausible that the models presented here can be modified for use
with thematic mapper spectral data.
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