3 research outputs found

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    SAT-Based Software Certification

    No full text
    This report formalizes a notion of witnesses as the basis of certifying the correctness of software. The first part of the report is concerned with witnesses for the satisfaction of linear temporal logic specifications by infinite state programs and shows how such witnesses may be constructed via predicate abstraction and validated by generating and proving verification conditions. In addition, the first part of this report proposes the use of theorem provers based on Boolean propositional satisfiability (SAT) and resolution proofs in validating these verification conditions. In addition to yielding extremely compact proofs, a SAT-based approach overcomes several limitations of conventional theorem provers when applied to the verification of programs written in real-life programming languages. The second part of this report formalizes a notion of witnesses of simulation conformance between infinite state programs and finite state machine specifications. The report also proves that computing a minimal simulation relation between two finite state machines is an NP-hard problem. Finally, the report presents algorithms to construct simulation witnesses of minimal size by solving pseudo-Boolean constraints. The author's experiments on several nontrivial benchmarks suggest that a SAT-based approach can yield extremely compact proofs
    corecore