6 research outputs found

    Analyzing the Efficiency of a New Image Encryption Method Based on Aboodh Transformations

    Get PDF
    الهدف من هذا البحث هو تطوير طريقة تشفير فريدة من نوعها تستخدم طريقة Aboodh وتحويلها العكسي مع طريقة S-Box. تشير نتائج التقييمات إلى أن هذا العمل مناسب للاستخدام في تطبيقات التشفير الآمنة، ويوفر أدلة فيما يتعلق ببناء نظام تشفير للصور بناءً على السلوكيات المعقدة التي يوضحها. بعد تطبيق المنهجيات التي تم تقديمها لتصوير البيانات المأخوذة من مواقف الحياة الواقعية، تم تقييم النتائج باستخدام مجموعة واسعة من المعايير الإحصائية ومعايير الأداء. نتائج هذا التحقيق تؤدي إلى تحسين موثوقية نظام التشفير.The goal of this research is to develop a unique cryptographic method that makes use of Aboodh and its inverse transform in combination with the S-Box approach. The results of evaluations indicate that this work is appropriate for use in safe cryptographic applications, and it provides clues regarding the building of an image cryptosystem based on the complicated behaviors that it demonstrates. After applying the methodologies that have been provided to depict data taken from real-life situations, the results have been evaluated using a wide variety of statistical and performance criteria. The findings of this investigation result in an improvement to the reliability of the cryptosystem

    S-box design method based on improved one-dimensional discrete chaotic map

    No full text
    A new method for obtaining random bijective S-boxes based on improved one-dimensional discrete chaotic map is presented. The proposed method uses a new special case of discrete chaotic map based on the composition of permutations, in order to overcome the problem with potentially short length of the orbits. The proposed special case is based on the composition of permutations and sine function and has a larger minimum length of the orbits compared to the previous special case of the discrete-space chaotic map. The results of performance test show that the example of S-box generated by the proposed method has good cryptographic properties. The proposed method can achieve large key space, which makes it suitable for generation of larger S-boxes, and the process of generation of S-boxes is not affected by approximations of any kind. Also, proposed method has potential to operate at greater speed and with smaller memory requirements than previous S-box generation method based on discrete space chaotic map, which can be particularly useful for lightweight devices such as wireless sensor networks

    S-box design method based on improved one-dimensional discrete chaotic map

    No full text

    Chaos and Cellular Automata-Based Substitution Box and Its Application in Cryptography

    Get PDF
    Substitution boxes are the key factor in symmetric-key cryptosystems that determines their ability to resist various cryptanalytic attacks. Creating strong substitution boxes that have multiple strong cryptographic properties at the same time is a challenging task for cryptographers. A significant amount of research has been conducted on S-boxes in the past few decades, but the resulting S-boxes have been found to be vulnerable to various cyberattacks. This paper proposes a new method for creating robust S-boxes that exhibit superior performance and possess high scores in multiple cryptographic properties. The hybrid S-box method presented in this paper is based on Chua’s circuit chaotic map, two-dimensional cellular automata, and an algebraic permutation group structure. The proposed 16×16 S-box has an excellent performance in terms of security parameters, including a minimum nonlinearity of 102, the absence of fixed points, the satisfaction of bit independence and strict avalanche criteria, a low differential uniformity of 5, a low linear approximation probability of 0.0603, and an auto-correlation function of 28. The analysis of the performance comparison indicates that the proposed S-box outperforms other state-of-the-art S-box techniques in several aspects. It possesses better attributes, such as a higher degree of inherent security and resilience, which make it more secure and less vulnerable to potential attacks
    corecore