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Abstract: Substitution boxes are the key factor in symmetric-key cryptosystems that determines
their ability to resist various cryptanalytic attacks. Creating strong substitution boxes that have
multiple strong cryptographic properties at the same time is a challenging task for cryptographers.
A significant amount of research has been conducted on S-boxes in the past few decades, but the
resulting S-boxes have been found to be vulnerable to various cyberattacks. This paper proposes a
new method for creating robust S-boxes that exhibit superior performance and possess high scores
in multiple cryptographic properties. The hybrid S-box method presented in this paper is based
on Chua’s circuit chaotic map, two-dimensional cellular automata, and an algebraic permutation
group structure. The proposed 16× 16 S-box has an excellent performance in terms of security
parameters, including a minimum nonlinearity of 102, the absence of fixed points, the satisfaction
of bit independence and strict avalanche criteria, a low differential uniformity of 5, a low linear
approximation probability of 0.0603, and an auto-correlation function of 28. The analysis of the
performance comparison indicates that the proposed S-box outperforms other state-of-the-art S-box
techniques in several aspects. It possesses better attributes, such as a higher degree of inherent
security and resilience, which make it more secure and less vulnerable to potential attacks.

Keywords: chaos theory; cyberattacks; substitution boxes; data security

MSC: 94-04; 94-00; 68-00; 68-04

1. Introduction

As online communication and data transfer continue to advance quickly, the need for
security measures is becoming increasingly critical. It is essential to safeguard sensitive
data as they travel across networks. Cryptography algorithms are utilized to achieve
this objective, as they offer the necessary security over insecure network channels. Es-
sentially, cryptography provides a way to encode and decode information so that it can
only be accessed by authorized parties and cannot be intercepted by unauthorized third
parties. This is crucial in ensuring the confidentiality and integrity of sensitive data during
transmission [1]. Symmetric cryptosystems have been a cornerstone of cryptography for
many years, serving as a key tool for implementing security measures. The concept of
modern cryptography was first introduced by Shannon in 1949, paving the way for the
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development of various types of block cryptosystems. These cryptosystems, such as the
Data Encryption Standard (DES), Advanced Encryption Standard (AES), and BLOWFISH,
rely on two fundamental concepts, confusion and diffusion, which were also introduced
by Shannon in his work [2]. The process of confusion involves scrambling the pixels by
shuffling either rows or columns. On the other hand, diffusion involves modifying the
pixel values themselves to spread their influence throughout the image. By using both
confusion and diffusion together, the correlation between the original image pixels can be
broken, resulting in a highly secure encryption system.

These concepts are used to ensure that the encrypted data are secure and cannot be eas-
ily deciphered, even if an unauthorized individual obtains the encryption key. Encryption is
primarily used to create a secure and confidential communication channel by transforming
plain text into an unreadable form known as ciphertext. The main objective of encryption
is to ensure that the ciphertext is only intelligible to authorized parties who possess the
necessary decryption key. To achieve this, encryption techniques are designed to make it
difficult for attackers to steal sensitive information. Additionally, another technique that is
commonly employed is “diffusion,” which serves to decrease the impact of a single piece
of plaintext on encrypted text [3,4]. This is implemented to mask the statistical redundancy
of the plaintext, making it harder to decipher. In order to achieve both confusion and
diffusion, block ciphers are used. A block cipher repeatedly performs a process to generate
multiple effects of these properties, resulting in an encrypted text that is extremely difficult
to decode without the correct key.

Block ciphers are encryption methods that divide the plaintext into fixed-size blocks
and apply a specific algorithm to each block. Several well-known aforementioned block
ciphers use this technique. However, block ciphers are vulnerable to various attacks,
including entropy attacks, energy attacks, and other differential attacks [5,6]. Differential
cryptanalysis aims to identify patterns in encrypted data. To achieve this, the attacker uses
specific input sets to track changes in the output [7–10]. To make encryption algorithms
more secure and strengthen them against various cyberattacks, a random association is
generated by the confusion component between the ciphertext and the key, which makes it
more challenging for potential attackers to identify any patterns or relationships within
the encrypted data [11–14]. A substitution box (S-box), a crucial building block of block
ciphers, is designed to break the correlation between the input image pixels. Essentially, it
replaces a block of plaintext bits with another block of bits (the ciphertext). By applying a
nonlinear substitution, the S-box makes it difficult for unauthorized parties to decipher the
original input from the output, enhancing the encryption’s security [15–18]. It takes in a
certain number of input bits and transforms them into a corresponding number of output
bits by using a nonlinear transformation. S-boxes play an important role in the security of a
cryptographic system, as they are responsible for producing high levels of nonlinearity that
make it difficult for attackers to predict the output of the cipher. In order to be effective,
S-boxes must be carefully designed to resist various types of attacks and should be able
to produce output that is robust and resistant to attempts at decryption. The effectiveness
of the substitution box in the AES block cipher has been a significant contributor to its
widespread adoption and success [19]. This substitution box, or S-box, has been developed
and improved using various techniques, including algebraic methods, optimization, chaotic
functions, and structures. Efficient S-boxes of different sizes are difficult to create due
to the extremely large search space involved. To address this challenge, meta-heuristic
optimization approaches have been developed recently to establish a reliable framework
for generating useful S-boxes. These techniques have helped in creating stable and efficient
S-boxes for the AES block cipher.

S-boxes are necessary components of various cryptographic algorithms. These al-
gorithms include symmetric block ciphers, symmetric stream ciphers, and hash func-
tions [20–22]. The primary purpose of an S-box is to provide nonlinear substitution, which
is a crucial element in achieving robust security in cryptographic systems. By introducing
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nonlinearity, S-boxes make it harder for attackers to exploit any linear relationships within
the system.

In symmetric block ciphers, S-boxes play a vital role in transforming plaintext data
into ciphertext during the encryption process. Symmetric ciphers such as the Advanced
Encryption Standard (AES) use S-boxes in multiple rounds to increase the complexity of the
cipher and, consequently, its resistance to attacks. Similarly, in symmetric stream ciphers,
S-boxes help to substitute the pixel values with other integer values ranging from 0 to 255 to
produce the ciphertext. The nonlinear nature of S-boxes ensures that the keystream remains
unpredictable and difficult to reverse-engineer. Moreover, hash functions, which are used
to generate a fixed-size output (hash) from input data of arbitrary size, also benefit from
S-boxes. In hash algorithms such as the Secure Hash Algorithm (SHA), S-boxes contribute
to the avalanche effect, where a small change in input data leads to a significant change in
the output hash. This characteristic is essential for preventing attackers from deducing any
information about the input data based on the hash.

2. Related Work

S-boxes are essential for achieving strong security in encryption methods. An S-box
typically takes in a specific number of input bits and transforms them into a different
number of output bits; this transformation function is called an m × n S-box. S-boxes
transform the input bits in a nonlinear manner, resulting in a unique output for each input
value, and this transformation process involves mapping 2m possible input values to 2n

possible output values [23–25]. S-boxes can be implemented as a lookup table that has
2m words, with each word consisting of n bits. It is important to note that m and n can
be equal or different. When the input m and output n are equal, the S-box is said to be
bijective. In other words, each possible input stream is mapped to a unique output stream,
and vice versa. Bijective S-boxes can be represented as a permutation sequence of integers
in the range [0, 2n− 1]. This means that there are (2n)! possible permutations, which is an
extremely large number. For instance, there are more than 1050 for 8× 8 S-boxes.

In the literature, the study of chaotic systems has been extensively used to create secure
S-boxes, which are crucial components of many cryptographic systems. The goal of using
chaotic maps is to design S-boxes that are resilient to various cyberattacks, including linear
and algebraic attacks. Researchers have demonstrated that by using chaotic systems such as
the Lorenz system, it is possible to create secure S-boxes. For instance, Ozkaynak et al. [26]
proposed secure S-boxes using the Lorenz chaotic system [27]. Additionally, Wang et al. [28]
proposed an S-box scheme that utilizes chaotic maps and a genetic algorithm to ensure
robustness against attacks such as entropy attacks [29–31]. Yin et al. [32] used chaotic maps
in an iterative process to generate S-boxes, while Lambi’c [33] utilized an advanced one-
dimensional chaotic map. Ozkaynak et al. [34] employed a fractional-order Chen chaotic
system. In [35], Quiroga et al. proposed dynamic S-boxes in which an improved logistic
map [36,37] is employed. Tanyildizi et al. [38] generated S-boxes with robust algebraic and
differential properties by utilizing an optimized 1D chaotic map [39]. El-Latif et al. [40]
utilized chaos and quantum walk to create a powerful cryptographic S-box. However,
relying solely on chaotic systems for generating S-boxes has some drawbacks [41]. Design-
ing S-boxes based on chaos theory can be a computationally demanding task, particularly
when generating key-dependent S-boxes [42]. In addition, many of these designs rely on
continuous-time systems that may be susceptible to cyberattacks. Even a minor change in
the value of a digitized continuous-time system can have a substantial impact on its future
behavior. Additionally, these S-box designs require complex hardware implementations. In
light of these issues, researchers have explored various techniques to enhance the features
of S-boxes. Some of the alternative techniques that have been investigated include algebraic
theories such as cellular automata [43] and elliptic curves [44].

One method for creating an S-box involves using a combination of linear fractional
transformation (LFT) and a Gaussian distribution [45,46]. To generate the S-box, the pro-
cess involved several steps, such as the Box–Muller transform and central limit technique.
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In [47], Ahmad et al. proposed a different method for generating random S-boxes of size
M × M (where M ≤ 16). In addition, Basha et al. [48] utilized a DNA technology to
develop S-boxes for image encryption, while Farhan et al. [49] employed RNA computing
techniques to produce multi-S-boxes. However, a few S-box designs have several weak-
nesses, such as low nonlinearity [50]. Therefore, several researchers have attempted to
use different types of elliptic curves to generate S-boxes that have reduced computational
costs. Azam et al. [51] developed efficient S-boxes using Mordell elliptic curves (MEC) over
prime fields [52]. In [52], Ullah et al. employed ordered Mordell elliptic curves to create
efficient S-boxes with lower time and space complexities, facilitating quicker generation
operations [53]. Hayat et al. [54] presented a methodology to create new S-boxes that
could be used in image encryption applications. Their approach involved an exhaustive
method for generating points on finite elliptic curves, which were then used to create
a randomized S-box [55]. In [56], an image encryption technique is proposed in which
quasi-resonant triads are used to design a pseudo-random number generator (PRNG) for
computing the multiplicative error correction (MEC) needed to construct the substitution
box (S-box) [57–60]. By utilizing the resulting PRNG and S-box, the encryption process
achieves both diffusion and confusion, which are essential for security. The development
of an S-box with robust cryptographic properties is critical for any cryptographic system.
Consequently, researchers have explored diverse strategies to achieve specific performance
objectives when constructing 8 × 8 S-boxes.

In this paper, a novel method for constructing S-boxes is introduced that integrates
ideas from 2D cellular automata, Chua’s circuit map, and algebraic theory. The approach
begins by using 2D cellular automata to generate an initial S-box. To improve the perfor-
mance and security of the S-box, an algebraic permutation with a customized structure is
employed. This results in an S-box that is both robust and secure. The constructed S-box
is shown to have excellent security and robustness through a performance comparison
analysis. Overall, several existing approaches demonstrate the variety of methods that
can be used to generate S-boxes using chaotic systems and highlight the potential benefits,
along with the limitations, of using such types of chaotic systems in cryptography.

The rest of the paper is structured as follows: In Section 3, we provide an introduction
to the relevant concepts of cellular automata for generating the proposed S-box. In Section 4,
the proposed methodology is discussed, which leverages 2D cellular automata, Chua’s
circuit map, and the algebraic permutation group structure. Section 5 is dedicated to the
security assessment and comparative analysis of the constructed S-box, and Section 6
concludes the proposed work.

3. Cellular Automata

John von Neumann and Stanisław Ulam [61] were the first to explore the mathematical
model of the cellular automaton (CA). A CA is a simple system with discrete states, space,
and time instances. Cellular automata are mathematical models that consist of a regular
and structured grid of individual cells. These cells can interact with each other in a way that
resembles random phenomena, despite the regularity of their arrangement. The structure
of cellular automata can be analyzed as a mesh of cells, where each cell has a binary value of
either 0 or 1. Alternatively, it can also be viewed as a grid, network, or array of cells, where
each cell stores a single bit of information. At each step in time, each cell in the automaton
updates itself independently based on its current state and the states of its neighboring cells.
A progress function is a tool used in network analysis to track the development, or “age”,
of the system. The application of this function occurs across all cells in the network, with
consideration given to the input state of each individual cell. The cellular-automata-based
rules used to determine the transition to the next state are simultaneously applied across
all cells.

To begin, an initial state is assigned to each cell at T = 0. Then, as time progresses
(T + 1), a predetermined rule (usually in the form of a function) is applied to determine the
new state of each cell based on its current state and the states of its neighboring cells. The
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rule used to update the cell states is typically the same for every cell and remains constant
over time, applied to the entire grid or network. This process of applying the same rule
to every cell in the network at each time step can be used to model complex systems and
observe their behavior over time.

The cellular automaton (CA) is a mathematical concept that can be described using
four different components, or “tuples.” These four tuples are D, S, N, and F, and together
they define the properties of a specific cellular automaton.

• D represents the set of all possible states that a cell in the automaton can have. This
could include any number of different states, depending on the specific problem being
studied.

• S is the set of all cells in the automaton. This defines the spatial structure of the
automaton and the number of cells that make up the system.

• N defines the set of neighboring cells that each cell in the automaton interacts with.
The neighborhood can vary depending on the specific problem being studied, and it
can be defined in many different ways.

• Finally, F is the set of rules that determine how each cell in the automaton evolves
over time. These rules can be quite simple or quite complex, and they determine the
behavior of the entire automaton as it evolves over time.

Together, these four tuples define the formal structure of a cellular automaton, and
they provide a framework for understanding the behavior of complex systems that can
be modeled using this mathematical concept. Let the number of cells of any dimension
be represented by N. Then, the mathematical representation of the CA state is given in
Equation (1).

ZT = {E0(T), E1(T), E2(T), · · · , EN−1(T)} (1)

where Ej(T) shows the state of the jth cell at time instant T. Similarly, at time instant (T + 1),
Equation (1) will be:

Z(T + 1) = {E0(T + 1), E1(T + 1), E2(T + 1), · · · , EN−1(T + 1)} (2)

where Ej(T + 1) = G
[
Ej−1(T), Ej(T), Ej+1(T)

]
, and the quantity of neighbors is contingent

upon the radius of the neighborhood. Here, two neighbors are considered, one before the
jth cell and the other one after the jth cell, and it is referred to as a neighbor with a radius
of 1. The automata states are defined as:

Z(T) = {E0(T), E1(T), E2(T), · · · , EN−1(T)}
Z(T + 1) = {E0(T + 1), E1(T + 1), E2(T + 1), · · · , EN−1(T + 1)}

Ej(T + 1) = G[Ej−1(T), Ej(T), Ej+1(T)]

 (3)

where ZT = the state of automata at time instant T; ET+1 = the state of automata at time
instant (T + 1); Ej(T) = the jth cell at time instant T; and Ej(T + 1) = the jth cell at time
instant (T + 1).

A one-dimensional CA can be illustrated as a linear array of cells, as shown in Figure 1.
Let the length of the automaton be denoted as N, and the radius, r, be set to 1. The
neighborhood of a given ith cell is Ni, which includes the cell itself plus 2r adjacent cells.
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Figure 1. One dimensional CA represented as linear array.

By considering a small-scale CA with tightly encircled borders, the formation of a
circular grid occurs. The following statistical measures are applicable to a one-dimensional
cellular automaton of length N and with a radius of 1.

• N = 3 is for a neighborhood cell;
• k = 2N = 23 = 8 is the length of the rule;
• Overall, the number of rules = 2k = 28 = 256.

Rule numbers 194 and 90 are specific rulesets for a one-dimensional cellular automaton
(CA). There are 23 = 8 possible configurations of these three cells (see Table 1), and each
configuration can lead to either a 1 or 0 state in the next time step. In a one-dimensional
CA, the cell’s next state depends on its current state and its two neighbors, resulting in
256 possible rules represented by an integer from 0 to 255.

Rule numbers 194 and 90 are decimal representations of the specific rulesets. To
understand how these rules work, the decimal rule number is converted into an 8-bit binary
number, where each digit corresponds to the output of a specific 3-cell neighborhood
configuration.

For example, Rule 194 in binary is 01000011. The binary digits, read from right to left,
correspond to the outputs of the 8 possible configurations, from 111 to 000. Similarly, Rule
90 in binary is 01011010. The outputs for Rules 194 and 94 are displayed in Table 1.

Table 1. Rule generation for 1D CA.

State of Neighborhood 000 001 010 011 100 101 110 111 Rule

State (T) 0 1 0 0 0 0 1 1 194
State (T + 1) 0 1 0 1 1 0 1 0 90

Rule 90 generates a fractal pattern called the Sierpinski triangle. It demonstrates
interesting properties, such as being reversible and producing intricate yet repetitive
structures. Rule 90 is suitable for applications where self-similarity or fractal patterns are
needed or for exploring reversible computation. On the other hand, Rule 194 produces
more irregular patterns, which can be useful for modeling stochastic or chaotic systems.
Therefore, for the proposed work, Rule 194 is more appropriate for image encryption that
requires a higher degree of randomness or complexity.

In a 2D CA, the value of a cell in the next time step depends on the values of its
neighboring cells in the 2D grid. Such 2D CAs have a wide range of applications, including
designing encryption techniques, processing images, analyzing biological data, detecting
intrusions, and testing patterns. The two-dimensional cellular automaton consists of a grid
of cells, each of which is updated according to a rule that depends on its neighbors in all
four directions, as depicted in Figure 2. Figure 2 shows an example of this method, with a
red cell and its neighboring cells shaded in gray.
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Figure 2. Cell representation: radius (r) = 1.

Von Neumann’s method defines neighborhood cells only in the horizontal and vertical
directions, and the number of cells included in the neighborhood may depend on the
neighborhood radius. However, only cells that are either directly above, below, to the left,
or to the right of the updating cell are considered for the update. The neighborhood radius
r in a 2D cellular automaton can be any integer, such as 1 or 2. An example of a 2D CA with
size M×M is shown in Figure 3a, where a red cell with a value of 1 at time T is updated
according to a rule (e.g., 2361501363) and its neighboring cells (shown in gray shades). All
cell values are updated according to the rule, resulting in a new state of the CA at time
(T + 1). The updated cell values, such as from 11010 to 11110, are shown in Figure 3b. The
details of generating the rules are given in Section 4.

(a) At time T (b) At time (T + 1).

Figure 3. Cellular automata with a size of N × N.

4. Proposed Technique for S-Box Generation

The proposed cryptographic scheme uses 2D CA, Chua’s circuit map, and an algebraic
group structure to design a robust S-box. The 2D CA is first initialized using the PWLCM
chaotic map to achieve good randomness throughout the automaton. The randomly
initialized cells of the 2D CA are then updated using automata rules for a specified number
of iterations. The proposed technique has six major stages: (a) initialization, in which a
basic system is employed to define a random function for obtaining the initial values, (b) the
definition of neighboring cells, (c) the generation of rules and the updating of cell values,
(d) the window selection method, (e) the generation of S-box values from the window, and
(f) the proposed group structure and its functioning.

4.1. Initialization

A CA can be initialized by setting the initial state of the cells in the grid. In simple
terms, it means defining whether each cell is 1 or 0 at the beginning of the simulation. This
initial configuration serves as the starting point for the cellular automata to evolve over
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time according to the chosen ruleset. There are several ways to initialize cellular automata,
some of which include random initialization, uniform initialization, seed or pattern initial-
ization, and user-defined initialization [62]. In the proposed work, the category of manual
initialization of the CA is chosen.

In order to create a lookup table that can be modified later, the first step is to initialize
the cellular automaton (CA). The proposed method uses a simple system to generate a
random function that obtains an initial value for the CA, which leads to a less complex and
more time-efficient process. To start, the defined sliding window value is used to calculate
new values for all initial values. Afterward, a system-based function is employed to
randomly initialize an S-box with dimensions of 16× 16 for the proposed method. Starting
with a seed automaton is necessary to obtain automata with random values. There are
many chaotic maps that can be used to generate pseudo-random numbers with excellent
randomness using suitable control parameters and initial conditions. In the proposed
method, Chua’s circuit is used to initialize the 2D automaton.

4.2. Chua’s Circuit

Chua’s circuit is a type of nonlinear electronic circuit system that is known for its
complex and dynamic behavior, as well as its ability to produce pseudo-random and unpre-
dictable outputs. This makes it useful for a variety of applications, including cryptography
and secure communication. The circuit is defined by Equation (4), which describes the
behavior of the system.

ṙ = ϕϕϕ
(

s− r− g(r)
)

ṡ = r− s + u

u̇ = −vvvs

 (4)

where the function g(r) represents the electrical response of a nonlinear resistor. It is
described as a piecewise linear function with two segments and is given in Equation (5).

g(r) = σr + (σσσ−µµµ)
{ |r + 1| − |r− 1|

2

}
(5)

where the inner and outer segment slopes are denoted by σσσ and µµµ, respectively. The
details on plotting Equation (5) are provided in [63]. The values of ϕϕϕ and vvv in Equation (4)
are determined by the specific values of circuit elements and state variables, such as
voltage on capacitors and current on inductors. As the value of ϕϕϕ increases, the system
undergoes a series of asymmetrical bifurcations, which gradually lead to the formation of
two asymmetrical attractors. This results in chaotic behavior, where the system exhibits a
double vortex chaos attractor.

This system consists of five components, which are two capacitors, one inductor, one
resistor, and one Chua’s diode, which is a type of nonlinear resistor. These components
can be easily built using op-amps. When the system’s parameters are set to specific values,
the system exhibits a type of chaotic behavior called “double vortex chaos attractor”. This
behavior occurs when the values of ϕϕϕ, vvv, σσσ, and µµµ are set to 10.2, 15.48, −1.1626, and
−0.5989, respectively, and the initial conditions for r, s, and u are set to 0.15. The behavior
of the system is displayed through the attractors, which are a way of visualizing the
system’s chaotic behavior, as shown in Figure 4.



Mathematics 2023, 11, 2322 9 of 25

(a) (b)

(c) (d)

Figure 4. Chua’s circuit system attractors. (a) r, s plane. (b) r, u plane. (c) s, u plane. (d) r, s and u
plane.

4.3. Definition of Neighboring Cells

Von Neumann’s method is a technique used to determine the neighboring cells in a
2D cellular automata system. To determine the rule for updating a cell’s state at (T + 1),
a specific sequence and order of indices for each cell must be established. These indices
are defined as R and C, where R represents the row number and C represents the column
number of the cell located at (R, C).

Figure 5 provides an illustration of the layout of all the neighboring cells of a specific
cell located at (R, C), along with the indices of each of these neighboring cells.
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Figure 5. The neighboring cells of the cell located at (R, C) according to von Neumann’s method.

4.4. Generating Rules and Updating the Cell Values

In cellular automata theory, the process of generating rules is extremely important.
Cellular automata can produce different rules even if they start with the same initial value.
These rules define how cellular automata work. For one-dimensional cellular automata,
there are at most 256 rules. However, for 2D as well as 1D cellular automata, each cell’s
state update at time (T + 1) depends not only on its previous state but also on the previous
state values of its neighbors and the specific rule being used. These updates can be thought
of as Boolean functions, which are mappings that take n inputs of either 0 or 1 and output
either 0 or 1.

The local rule that represents these cell state updates can be defined based on these
Boolean functions.

CT+1
[R,C−1] = f

(
CT
[R+1,C], CT

[R,C], CT
[R,C+1], CT

[R−1,C]
)
= 0 or 1 (based on the rule) (6)

where T is the time stamp, CT+1
[R,C] is the cell state [R, C] at time (T + 1), and CT

[R,C] is the cell
state [R, C] at time T.

In a 2D CA with defined neighbors for radius r = 1, the local rule involves 5 variables,
each of which can have 2 states, resulting in a total of 25 = 32 possible combinations of
the variables. This means that there are 232 = 4,294,967,296 different rules that can be used
to update the cells. When r is equal to 1, there are a total of five cells that are taken into
account to decide the value of the cell being updated. This includes the cell being updated
and four other cells. The new value of the cell being updated at time T + 1 is determined
based on the values of all five cells at time T.

Since there are five cells that need to be arranged, including the cell being updated,
there are five factorial (5!) ways to arrange them. The proposed method uses a specific
arrangement, which is shown in Figure 6.

Binary: 11100001010101111101011101000011
Rule (decimal equivalent): 3780630339

The rule number for a 2D CA can be determined by arranging the five cells and
updating the value of the cell at (T + 1) based on the values of all five cells at T. For
each possible arrangement of the five cells, there are 32 different truth tables that can be
generated, which correspond to 32 different values for the cell at T + 1. By taking the
decimal value of each of these 32 arrangements at time T + 1, a unique rule number can
be generated for CA. Figure 7 shows an example of this process for a specific rule number
(decimal equivalent: 7561260679).
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Figure 6. Cell arrangement.

Figure 7. Example of rule generation.

4.5. Window Selection Method

The process of window selection plays a crucial role in the proposed scheme, as it
enables the algorithm to identify the specific element within the anticipated S-box. This
is carried out by calculating the value of the S-box cell from the binary values of the 2D
automata cells using a sliding window technique. The value of the S-box cell is filled by
sliding the window to obtain the next cell value. Since we need 8 bits to represent a value
in the range (0, 256), a 2 × 4 window is used to fulfill this requirement. This ensures that
the window can generate all 256 values for the S-box by sliding over the binary cells of the
two-dimensional automata.

To calculate the value of the S-box cell, the initialization of the window is at location
(0, 0) of the 2D CA, and the calculated value is then appended to the S-box table. The
process of obtaining the next value of the S-box involves shifting a window of two positions
to the right and checking the calculated value in the S-box table. Whenever the value
is absent from the table, it is included, and the window is shifted again. This process
continues until the window reaches the bottom-right corner of the automaton. After this,
the automaton is updated by invoking the update function, and the rest of the computations
are performed using a similar approach. This sliding or shifting of the window from left to
right and top to bottom allows the proposed scheme to compute all 256 unique values of
the 16× 16 S-box table. This approach ensures that each value in the S-box table is unique
and that the entire table is generated efficiently and accurately. Figure 8 illustrates the
process of sliding windows used in the proposed scheme.
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Figure 8. Process of sliding windows.

4.6. Generating S-Box Values from Window

In this section, the process of calculating decimal values from a 2 × 4 window is
explained. A linear order is taken for the current window rows, with the first row being
appended after the second row. The decimal equivalent number of the resulting 8-bit binary
number is then calculated. Figure 9 illustrates this process, which uses the first window
from Figure 7 as an example.

Figure 9. Calculating value based on the current sliding window.
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The proposed S-box scheme consists of several components. Firstly, an empty S-box is
created. Secondly, a 2D cellular automaton is generated. The automata are further iterated
a pre-defined number of times to enhance randomness. The third part of the algorithm
involves using a sliding window technique to compute the S-box values from the 2D
automaton. This involves comparing the calculated value with the value already present in
the automaton. If the calculated value matches the existing S-box value, the window is slid
to calculate a new unmatched value. On the other hand, if the calculated value does not
match, it is appended to the S-box.

The proposed method works as follows:

• Initially, the 8× 8 matrix is empty.
• The 8× 8 S-box is first filled with random values, which will be replaced later with

values computed using 2D cellular automata.
• The initialization of the 2D CA lookup table is created using a chaotic tent map as

follows:

- Set the initial conditions.
- Iterate the chaotic map 100 times. This will generate 100 different values, ranging

from 0 to 1.
- Multiply each value with any large integer number to amplify the created values.
- Truncate the numbers that are placed right after the decimal point.
- Take the modulo of the values generated in the previous step as mod(value, 16),

and add +1 to each value to restrict the values in the range 1 to 16.
- Choose the first 16 unique values to generate a permutation vector.
- Similarly, a 2D lookup table can be created by selecting the first 256 unique values

obtained after performing a modulus operation on the values with 256.

• Two functions are defined for generating an output bit based on the defined rule and
updating the initial automata for a specified number of iterations.

• The S-box (S1) is updated with the calculated values obtained from the automata using
a sliding window protocol.

• Using the permutation group, S1 is again updated. The permutation group has
16 different permutation vectors.

• Finally, the resulting substitution box exhibits strong nonlinearity and other crypto-
graphic properties.

4.7. Proposed Group Structure and Its Functioning

Algebraic theories have been found to be useful in designing S-boxes since the success-
ful implementation of the AES S-box [64]. Various proposals have been made for S-boxes
that rely on algebraic structures. However, S-boxes that are solely based on algebraic tech-
niques are vulnerable to algebraic attacks. To make algebraic attacks more difficult, there
is a need to integrate the concepts of chaos, cellular automata, and algebraic techniques.
Limited research has focused on improving S-boxes using effective algebraic structures. By
combining these different approaches, the design of S-boxes can become more secure and
less susceptible to attacks. To improve the security of S-boxes, it is important to develop a
strong algebraic structure that can be used to enhance the S-box’s security. To achieve this,
a hybrid method is proposed that involves designing and implementing an algebraic per-
mutation group. After conducting extensive experimentation, a suitable algebraic structure
was designed, and its action on the S-box, obtained by using 2D CA, was found to enhance
the S-box’s security strength. The resulting S-box (S1) that is obtained after the action of the
suggested algebraic group is presented in Table 2.
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Table 2. Proposed S-box (S1).

91 109 125 165 190 25 250 161 242 149 198 162 207 241 213 201
180 132 40 108 9 205 131 140 160 172 88 138 249 233 57 0
116 85 45 133 105 44 82 225 113 211 43 181 216 251 252 230
112 193 119 86 141 3 159 27 221 127 4 67 156 202 196 186
68 121 103 191 92 78 143 95 76 55 224 238 179 195 46 7

236 97 59 120 176 150 94 168 29 227 173 209 234 20 239 5
130 53 1 56 114 158 171 110 69 26 215 37 232 35 199 237
71 16 72 10 118 145 208 200 107 147 220 51 183 204 18 226
23 128 24 129 73 167 38 124 137 163 135 240 245 42 212 192
81 79 101 75 223 84 50 90 184 136 188 218 144 229 8 14
99 32 153 28 175 197 117 33 64 63 2 194 169 170 185 6

157 62 152 70 74 123 65 30 247 248 155 52 203 54 246 11
104 111 100 106 222 93 243 89 48 142 164 19 60 13 187 244
146 126 154 139 178 49 22 36 41 174 134 34 228 177 255 12
96 80 102 235 115 39 83 122 58 217 189 219 182 210 254 253

166 206 151 87 231 47 98 66 77 31 148 17 61 214 21 15

To improve the proposed S1, a set of sixteen permutation vectors is introduced in a
permutation group, as shown below:

P1 =
{

11,4,16,12,2,7,1,3,13,8,6,5,9,15,14,10
}

P2 =
{

6,14,3,16,4,1,10,12,8,2,11,9,13,7,5,15
}

P3 =
{

14,10,13,11,8,12,15,1,4,3,9,6,5,7,2,16
}

P4 =
{

11,15,5,7,3,2,16,13,14,4,8,9,12,6,10,1
}

P5 =
{

2,14,9,10,8,15,12,4,6,1,13,5,3,11,7,16
}

P6 =
{

12,7,11,3,13,65,14,10,15,2,4,8,9,1,16
}

P7 =
{

14,1,7,16,3,15,8,6,4,11,2,12,5,10,9,13
}

P8 =
{

1,11,2,13,9,14,7,4,12,5,8,16,10,15,6,3
}

P9 =
{

3,4,13,12,16,7,10,5,15,9,14,2,6,8,11,1
}

P10 =
{

6,14,8,12,15,7,11,4,5,3,1,9,10,13,2,16
}

P11 =
{

8,2,12,16,7,11,10,14,15,6,9,1,3,4,13,5
}

P12 =
{

10,1,11,14,13,9,15,3,4,12,7,2,16,5,6,8
}

P13 =
{

13,11,4,16,9,15,2,8,3,1,7,6,10,5,14,12
}

P14 =
{

15,4,13,1,9,10,11,16,8,2,5,12,14,6,3,7
}

P15 =
{

6,16,3,2,14,9,7,8,4,15,5,1,12,10,13,11
}

P16 =
{

9,10,6,16,3,1,2,11,12,13,7,8,14,4,15,5
}

The permutation vectors (P1, P2, · · · , P16) are generated according to Example 1.

Example 1. Pseudo-code for generating the permutation vectors

- Start
- Let a portion of the original generated chaotic sequence be:

X = 0.145, 0.134, 0.279, 0.347, 0.134, 0.154

- Now, to generate the desired values, follow the following algorithm:

1. Amplify the values stored in X by multiplying with any large integer number; let us say:
989. The resultant values will be:

A = 143.405, 132.526, 275.931, 343.183, 132.526, 152.306

2. Truncate the integers placed after the decimal points using the floor function (the floor is
a MATLAB built-in function) and store the result in Z:

Z = 143, 132, 275, 343, 132, 152

3. Take the module of Z as follows:

M = mod (Z, 16) + 1.

4. This gives M = 16, 5, 4, 8, 5, 9.

The generated vectors (P1, P2, P3, ·, P16) are used to scramble the values of S1 that are
located in each row and column of the S-box. A permutation is a process used in the
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proposed work for rearranging the existing integer values in the S-box. In this process,
each value is scrambled according to the integer value given in the permutation groups, as
mentioned above. The entire permutation process is explained below:

1. Read the existing S-box values: The first step is to read the existing S-box values into
a digital format that can be manipulated.

2. Create a permutation key: The next step is to create a permutation key, which will be
used to determine the new positions of the pixels. In this case, sixteen permutation
groups (P1, P2, P3, · · · , P16) are used as permutation keys.

3. Map the original values to new positions: Using the permutation groups, each value
is mapped to a new position. This process involves swapping the original values with
new values based on the permutation groups

4. Store the updated permuted S-box: After all the values have been rearranged, the
permuted S-box is stored in a digital format.

In order to provide a clear explanation of the permutation process, the first row of S1
is taken as a sample.

The first row of S1 consists of the values [91 109 125 165 25 250 161 242 149 198 162 207
241 213 201]. To permute these values, a permutation group or vector (P1) is used. The first
element of P1 is 11, indicating that the value located at position (1, 11) in S1 will be moved
to the first position (1, 1). Correspondingly, the second element of P1 is 4, signifying that
the value situated at position (1, 4) in S1 will be transferred to the second position (1, 2),
and so on. The final value in P1 is 10, meaning that the value located at position (1, 10) in
S1 will be shifted to position (1, 16). Once the permutation process is performed on the
first row of S1 utilizing P1, the resulting updated row is [198 165 201 162 109 250 91 125 207
161 25 190 242 213 241 149]. Similarly, for each row that needs to be permuted, a distinct
permutation group will be chosen, as shown below:

For Row 1: P1 is chosen.
For Row 2: P2 is chosen.
For Row 3: P3 is chosen.

...
For Row 16: P16 is chosen.

This process further enhances the security and complexity of the final proposed S-box
(SF). The updated S-box (SF) that is created after the employment of a permutation group
on S1 is given in Table 3. The entire process of the proposed method is illustrated in
Figure 10.

Table 3. Updated S-box (SF).

129 190 6 246 216 3 154 226 53 233 132 123 28 107 109 182
91 18 219 171 124 248 12 130 85 1 92 32 247 117 47 7
82 119 131 215 101 145 225 187 71 67 194 69 251 116 42 201

221 106 94 122 24 78 205 158 58 4 161 99 79 108 254 184
169 157 189 103 245 232 250 255 27 128 125 16 180 65 60 83
222 142 159 146 178 217 48 202 59 97 186 214 242 45 88 111
135 50 252 37 35 126 156 61 64 183 0 199 38 210 206 209
89 29 195 229 137 100 8 19 11 239 163 36 49 31 56 90

203 95 9 150 51 175 244 227 136 120 55 139 196 63 14 43
164 127 138 72 44 153 179 152 204 105 241 151 243 15 121 81
236 87 86 147 253 17 134 70 235 144 174 84 41 54 104 173
165 208 211 34 198 200 74 26 162 20 39 177 10 93 191 188
52 166 167 5 76 2 62 172 57 115 13 140 224 193 212 113
40 231 228 77 238 68 168 25 30 110 21 46 230 22 181 112

160 155 149 234 148 218 143 176 237 133 213 118 207 114 223 240
249 66 73 170 33 98 80 141 197 220 75 102 23 96 192 185
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Figure 10. Steps to propose a new S-box.

4.8. Application of S-Box

To evaluate how well the S-box performs, it was tested on common plaintext images
such as Lena, a camera, and a baboon, each of size 256 × 256. Figure 11 presents the
histograms for the plaintext images and their corresponding pixel distributions. The his-
tograms indicate that the distribution of pixels is not uniform, which suggests a significant
level of correlation between the pixels.

(a) (b) (c)

(d) (e) (f)

Figure 11. (a–c) Plaintext images; (d–f) histogram of the plaintext images.

The resulting ciphertext images after applying the proposed S-box sF are shown in
Figure 12. The ciphertext images appear to be completely encrypted, and the original
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information cannot be seen. Additionally, the histograms of the ciphertext images show an
even distribution of pixel values, indicating that there is very little correlation between the
pixels.

(a) (b) (c)

(d) (e) (f)

Figure 12. (a–c) Ciphertext images; (d–f) histogram of the ciphertext images.

Moreover, a statistical security analysis was also carried out for the ciphertext images
that are generated by applying the proposed S-box. Statistical security parameters include
entropy, correlation, contrast, energy, and homogeneity. The details of the mathematical
calculation of such parameters are given in [65–68]. Table 4 displays the statistical values
of the security parameters for plaintext and ciphertext images generated using SF and the
existing S-boxes. Based on the comparison analysis, it is evident that SF outperforms the
existing ones in terms of encrypting the plaintext image with higher security.

Table 4. A comparison and security analysis of ciphertext images generated using SF and existing
S-boxes.

Images and References Correlation Entropy Contrast Energy Homogeneity

Plaintext image (Lena) 0.5778 7.6345 6.6347 0.1578 0.8764
Ciphertext image 0.0014 7.9986 9.8567 0.0159 0.1334
Zahid et al. [69] 0.0465 7.8986 9.4678 0.0164 0.3798
Ahmad et al. [47] 0.0223 7.9764 9.3647 0.0159 0.3472
Malik et al. [70] 0.01345 7.9697 9.1678 0.0161 0.4671
Shakiba et al. [71] 0.0149 7.9463 9.5374 0.0160 0.5316
Alhadawi et al. [72] 0.0155 7.9726 9.3360 0.0163 0.4445

5. Statistical Analysis of the Proposed S-Box

The proposed scheme for generating a hybrid S-box was carried out utilizing MATLAB
2022a, and the computer specifications used are as follows:

Read-Only Memory (RAM): 8.00 GB;
Solid-State Drive (SSD): 512 GB;
Windows: 11;
Processor: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz 2.42 GHz.
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This section reports the evaluation of the performance of the proposed S-boxes using
well-known standard security parameters. Additionally, the obtained results are compared
with several existing S-box methods that have been recently investigated in the literature.

5.1. Nonlinearity

In block ciphers, an S-box is usually used to create a nonlinear transformation from
plaintext to ciphertext, and the nonlinearity offered by the cipher is a critical factor in
ensuring security [73]. To reduce the vulnerability to linear cryptanalysis, block ciphers are
designed to have strong resistance and nonlinearity. The nonlinearity of an M×M S-Box
is an important metric for measuring the strength of a block cipher. One way to measure
the nonlinearity of an S-Box is by calculating its degree of nonlinearity, denoted as Nl . One
way to accomplish this is by finding the N-variable affine function that has the smallest
Hamming distance with the N-variable Boolean function of the S-Box among all possible
N-variable affine functions. A higher value of (Nl) indicates that the corresponding S-box
is more nonlinear and offers better resistance against attacks, making it more secure.

Nl( f ) = min
[

R ∈ FN
2 | f (R) 6= g(R)|

]
(7)

Nl( f ) = 2N−1
[
1− 2−N max

Ω∈GF(2N)
|WFf (Ω)|

]
(8)

To evaluate the nonlinearity of an 8-bit Boolean function, the Walsh spectrum is
commonly utilized, as shown in [34].

WFf (Ω) = ∑
R∈FN

2

(−1) f⊕a·b (9)

It should be noted that a · b represents the bitwise dot product. The proposed S-box
is found to have excellent nonlinearity performance statistics, with nonlinearities of 102,
106, 104, 106, 102, 102, 106, and 106. The NLs for SF have minimum, maximum, and mean
values of 102, 106, and 104.25, respectively, indicating high scores.

Keyspace Analysis

Keyspace analysis in the generation of an S-box involves the evaluation of the total
number of possible S-boxes that can be generated given a particular key size. The key
size determines the number of bits that can be used to generate the S-box. For example,
a key size of 8 bits allows for 256 possible S-boxes, while a key size of 16 bits allows for
65,536 possible S-boxes.

To generate an S-box, a permutation of the numbers 0 to 255 (or 0 to 65,535 for a 16-bit
key) is created based on the key value. The permutation is used to determine the mapping
of input values to output values. The larger the key size, the more possible permutations
there are, resulting in a larger keyspace and a higher level of security.

The proposed method employs two chaotic keys denoted as ϕϕϕ = 10.200000000000000
and vvv = 15.480000000000000, each having a sensitivity of 10−15. This indicates that each
key has a keyspace of 10+15. Thus, the total keyspace is 1015∗2 = 1030, which is ≈2100.
According to Alvarez’s criteria of keyspace, to resist a brute-force attack, the keyspace
should be '2100 [74]. The proposed method satisfies Alvarez’s criteria for keyspace, which
means that the proposed S-box is capable of withstanding brute-force attacks.

5.2. Differential Uniformity

Differential cryptanalysis is a method of analyzing the security of a cryptographic
system by examining the maximum difference in output for a given range of input differ-
ences [75]. The differential uniformity (DU) value is a measure of the uniformity of this
function for all input and output differences. A secure substitution box should have a
uniform differential, which means that the maximum difference in the output should be
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evenly distributed across all possible input differences. The mathematical formula used to
calculate the DU value for an S-box is a key tool in assessing the strength of a cryptographic
system.

DU = max
[

j ∈ B : T(j)⊕ T(j + δj) = δk
]δj 6=0,δk

(10)

The terms δj and δk refer to the differences between input and output values. Table 5
reveals that the proposed S-box (SF) has a maximum differential uniformity score of 5
that occurs only three times. This indicates that these S-boxes have demonstrated a strong
ability to resist attacks using differential cryptanalysis.

Table 5. Differential uniformity for the proposed S-box.

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 5 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

5.3. Strict Avalanche Test

Webster and Tavares established the strict avalanche criterion (SAC) as a crucial factor
for evaluating the strength of S-boxes [73]. In order to meet the SAC requirement, changing
a single input bit should result in a 50% change in the output vector. A half-avalanche is
necessary to prevent any correlation between input and output mixes and to prevent the
leakage of sensitive data. A SAC value close to 0.5 is considered desirable.

For the proposed S-box (SF) shown in Table 6, the dependency matrix was calculated,
and all the entries in the table were found to be quite close to 0.5. The average score of the
dependency matrix is 0.4993, which indicates that the proposed S-box satisfies the strict
avalanche criterion well and is very close to the ideal score of 0.5. Therefore, the proposed
S-box exhibits a good avalanche effect and satisfies the requirements for strong S-boxes.

Table 6. Strict avalanche test for the proposed S-box.

0.5625 0.5312 0.5625 0.4844 0.5469 0.5469 0.5312 0.5000
0.5000 0.5000 0.3906 0.3906 0.5312 0.4375 0.4844 0.5469
0.4375 0.4062 0.4688 0.5156 0.5000 0.5156 0.5781 0.5156
0.4844 0.4844 0.5469 0.4219 0.4375 0.4375 0.5312 0.5469
0.5469 0.4688 0.5312 0.4844 0.5156 0.4375 0.5156 0.4219
0.5469 0.5469 0.5000 0.4688 0.5625 0.5000 0.5469 0.5469
0.5312 0.5000 0.5469 0.5312 0.4375 0.4844 0.5312 0.4844
0.4844 0.4531 0.4531 0.4844 0.5000 0.5000 0.5000 0.5156

5.4. Linear Approximation Probability

Linear cryptanalysis was first introduced by Mitsuru in 1994 [76], and it has become
an important field of study in cryptology, alongside differential cryptanalysis. While differ-
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ential cryptanalysis focuses on the analysis of individual bit positions, linear cryptanalysis
is a method that deals with multiple bit positions. For an S-Box F with a size of N × N, the
linear cryptanalysis problem is typically defined as follows:

L{LPA} = max
Θy,Θz 6=0

L{LPA}(Θy, Θz) (11)

L{LPA}(Θy, Θz) can be calculated as follows:

L{LPA}(Θy, Θz) =

[
y ∈ Y| f (y⊕Θy) = f (y)⊕Θz|

]
− 2N−1

2N (12)

The variables Θy and Θz refer to the parity of input and output bits in their respective
masks. Like in DP, L{LPA}(Θy, Θz) follows the same rule:

∑
Θy,Θz∈FN

2

LPF(Θy, Θz) = 1 (13)

The effectiveness of an S-box in resisting linear cryptanalysis attacks is determined by
its LAP value. Reducing the LPF (linear probability function) is an effective way to increase
the complexity of a linear cryptanalysis attack [40]. By decreasing the LPF, it becomes more
difficult for an attacker to identify linear relations between input and output bits, making
the system more resistant to linear cryptanalysis.

In the case of the proposed S-box (SF), the LAP score is 0.0601. This demonstrates that
the S-box is much more capable of resisting linear cryptanalysis than the S-box prior to the
group action.

5.5. Bit Independence Criterion

The bit independence criterion (BIC) is an equally important factor in ensuring the
strength of S-boxes. In order to test for the BIC, a method was proposed by Adams and
Tavares [76]. Essentially, to satisfy the BIC, the Boolean functions XOR(Bi1 , Bj1) (where i1
and j1 are distinct integers between 0 and 7) should be highly nonlinear and demonstrate
a strong avalanche effect. To confirm that a given 8 × 8 S-box meets the BIC, one must
calculate the SAC and nonlinearity of each of the 56 possible XOR(Bi1 , Bj1 ) Boolean functions.
The researchers evaluated the potential nonlinearity values of all 56 XOR(Bi1 , Bj1 ) functions
for the intended S-box, and their findings are summarized in Table 7. They found that the
average nonlinearity score for the BIC is 111.12. This indicates that the proposed S-box
performs exceptionally well in meeting the bit independence criterion, as verified by its
high BIC score.

Table 7. Bit independence criterion for the proposed S-box.

- 111 112 111 111 111 111 112
111 - 111 111 112 112 110 111
112 112 - 110 111 112 112 111
111 111 111 - 112 111 110 111
112 112 111 111 - 110 111 110
111 111 111 111 112 - 112 111
110 111 112 112 111 111 - 110
112 111 111 112 110 110 110 -
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5.6. Auto-Correlation Function

If we have Boolean mappings D(r) and E(r), their correlation can be represented by
the symbol CDE(y), mathematically defined as:

CDE(y) = ∑
r

1
2N

[
(−1)D(r)⊕E(r⊕y)

]
(14)

However, CDD(y) and CEE(y) represent the auto-correlation functions (ACFs) for
mapping D(r) and E(r), respectively. Mathematically, they can be calculated using
Equations (15) and (16), respectively.

CACF = WD(y) = ∑
1

2N

[
(−1)D(r)⊕D(r⊕y)

]
(15)

CACF = WE(y) = ∑
1

2N

[
(−1)E(r)⊕E(r⊕y)

]
(16)

In order for an S-box to exhibit a strong diffusion effect, it is desirable to have a lower
score for its ACF.

5.7. Comparison Analysis and Discussion

In the last several decades, researchers have been exploring various methods to create
S-boxes that are resilient against cryptographic attacks [77]. To evaluate the effectiveness
of any new S-box design, it is important to compare its security features against existing
S-boxes [35,47,69–72,78,79]. In Table 8, the values of several statistical analyses for existing
schemes are displayed. These schemes utilize a variety of design concepts, including chaos,
the elliptic curve, and the algebraic method. By comparing the suggested S-box design
with the methods shown in Table 8, researchers can determine how it performs in relation
to these state-of-the-art S-box designs. This comparison can help to determine whether
the suggested S-box is a significant improvement over existing designs and whether it is a
suitable candidate for use in cryptographic applications.

In the design of S-boxes, nonlinearity is typically the primary focus among all perfor-
mance parameters considered [80]. Other performance parameters must also be taken into
account to ensure that the S-box is robust against attacks other than linear ones. There-
fore, it is important to generate S-box designs that score well on all relevant parameters,
in addition to nonlinearity, to enhance the overall security of the S-box. In Table 8, it is
revealed that the suggested S-box has excellent nonlinearity compared to almost all of the
S-box designs listed. The proposed S-box (SF) has a minimum nonlinearity score of 102,
with an average score of 104.25. In block cryptosystems, the suggested S-box can transform
plaintext to ciphertext in a highly nonlinear way during the substitution phase. This means
that the output ciphertext is significantly different from the input plaintext and cannot
be easily predicted or reversed without knowledge of the encryption key. Along with its
high nonlinearity feature, the suggested S-box design also demonstrates good performance
in terms of XOR distribution analysis, with a decent DU score of 5. This DU score is the
lowest among those presented in Table 8, which suggests that the proposed S-box offers
better resistance to differential cryptanalysis compared to other recently investigated S-box
designs.

The strict avalanche criterion (SAC) value of the proposed SF is 0.4993, which is
comparable to the SAC values of other S-box designs listed in Table 8. This indicates
that the suggested S-box meets the SAC criterion and is suitable for use in cryptographic
applications. Overall, the performance of the suggested S-box design appears to be quite
robust and secure based on its high nonlinearity, low DU score, and satisfactory SAC value.

The BIC analysis of the proposed SF shows that the BIC-NL (bit independence
criterion—nonlinearity) value is 111.12, which is higher than existing S-box designs. To
resist Mitsui’s linear cryptanalysis method, it is crucial for the S-box to exhibit a lower LAP.
The suggested S-box design has a LAP score of 0.0603, which is the lowest among all other
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S-box designs listed in Table 8. This indicates that the suggested S-box has an improved
ability to withstand linear attacks.

Another important performance parameter used to assess the strength of the S-box
is the auto-correlation function (ACF). The suggested S-box design is found to have an
excellent ACF score of 28, which is the best among all other S-box designs listed in Table 8.
In summary, the suggested S-box design demonstrates high scores in various performance
parameters, such as nonlinearity and BIC, and low scores for DU, LAP, and ACF, indicating
its robustness and suitability for use in cryptographic applications.

Table 8. Comparison analysis of the proposed S-box with existing ones.

S-Box MinNl MaxNl AvgNl DU SAC LAP BIC ACF

Proposed (S1) 92 106 101.65 6 0.5010 0.0903 110.65 30
Proposed (SF) 102 106 104.25 5 0.4993 0.0601 111.12 28
Quiroga et al. [35] 96 112 102.25 12 0.5059 - 103.42 -
Ahmad et al. [47] 111 112 111.5 - 0.4978 0.125 103.86
Zahid et al. [69] 110 112 111.3 10 0.5030 0.1258 103.8 -
Malik et al. [70] - - 112 - 0.5009 0.0625 112 -
Shakiba et al. [71] 100 104.5 108 - 0.5017 0.1328 104.29 -
Alhadawi et al. [72] 106 110 108.5 10 0.4995 0.1094 103.85 -
Lambi et al. [78] 106 - - 10 - 0.0705 104.07 -
Özkaynak et al. [79] 106 108 106.7 - 0.4063 - 103.2 -

6. Conclusions

This paper discusses the importance of a strong S-box, which is a mathematical
function used in encryption. A strong S-box needs to have excellent performance in
multiple areas, but existing methods often focus only on one area, such as nonlinearity,
while neglecting other important parameters. This paper proposes a new hybrid method for
creating an S-box that uses chaos, 2D cellular automata, and algebra. The proposed method
first creates an S-box using chaos and 2D cellular automata, which is then utilized to secure
the digital image to show that the proposed S-box is capable of properly encrypting the
image pixels. The goal is to create an S-box that has excellent scores in most performance
parameters, such as an average Nl of 104.25, a SAC of 0.4993, a DU of 5, a BIC of 111.12, a
LAP of 0.0603, and an ACF of 28. The comparison analysis shows that the S-box created
using the proposed method is more secure and robust than many recent S-boxes, making it
a suitable candidate for use in secure block cipher implementations.
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