3 research outputs found

    When is it Beneficial to Reject Improvements?

    Get PDF
    We investigate two popular trajectory-based algorithms from biology and physics to answer a question of general significance: when is it beneficial to reject improvements? A distinguishing factor of SSWM (Strong Selection Weak Mutation), a popular model from population genetics, compared to the Metropolis algorithm (MA), is that the former can reject improvements, while the latter always accepts them. We investigate when one strategy outperforms the other. Since we prove that both algorithms converge to the same stationary distribution, we concentrate on identifying a class of functions inducing large mixing times, where the algorithms will outperform each other over a long period of time. The outcome of the analysis is the definition of a function where SSWM is efficient, while Metropolis requires at least exponential time

    Memetic Algorithms Beat Evolutionary Algorithms on the Class of Hurdle Problems

    Get PDF
    Memetic algorithms are popular hybrid search heuristics that integrate local search into the search process of an evolutionary algorithm in order to combine the advantages of rapid exploitation and global optimisation. However, these algorithms are not well understood and the field is lacking a solid theoretical foundation that explains when and why memetic algorithms are effective. We provide a rigorous runtime analysis of a simple memetic algorithm, the (1+1) MA, on the Hurdle problem class, a landscape class of tuneable difficulty that shows a “big valley structure”, a characteristic feature of many hard problems from combinatorial optimisation. The only parameter of this class is the hurdle width w, which describes the length of fitness valleys that have to be overcome. We show that the (1+1) EA requires Θ(n w) expected function evaluations to find the optimum, whereas the (1+1) MA with best-improvement and first-improvement local search can find the optimum in Θ(n 2 +n 3/w2 ) and Θ(n 3/w2 ) function evaluations, respectively. Surprisingly, while increasing the hurdle width makes the problem harder for evolutionary algorithms, the problem becomes easier for memetic algorithms. We discuss how these findings can explain and illustrate the success of memetic algorithms for problems with big valley structures
    corecore