16 research outputs found

    Introduction to Runtime Verification

    Get PDF
    International audienceThe aim of this chapter is to act as a primer for those wanting to learn about Runtime Verification (RV). We start by providing an overview of the main specification languages used for RV. We then introduce the standard terminology necessary to describe the monitoring problem, covering the pragmatic issues of monitoring and instrumentation, and discussing extensively the monitorability problem

    Verifying Policy Enforcers

    Get PDF
    Policy enforcers are sophisticated runtime components that can prevent failures by enforcing the correct behavior of the software. While a single enforcer can be easily designed focusing only on the behavior of the application that must be monitored, the effect of multiple enforcers that enforce different policies might be hard to predict. So far, mechanisms to resolve interferences between enforcers have been based on priority mechanisms and heuristics. Although these methods provide a mechanism to take decisions when multiple enforcers try to affect the execution at a same time, they do not guarantee the lack of interference on the global behavior of the system. In this paper we present a verification strategy that can be exploited to discover interferences between sets of enforcers and thus safely identify a-priori the enforcers that can co-exist at run-time. In our evaluation, we experimented our verification method with several policy enforcers for Android and discovered some incompatibilities.Comment: Oliviero Riganelli, Daniela Micucci, Leonardo Mariani, and Yli\`es Falcone. Verifying Policy Enforcers. Proceedings of 17th International Conference on Runtime Verification (RV), 2017. (to appear

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Formally Bounding UAS Behavior to Concept of Operation with Operation-Specific Scenario Description Language

    Get PDF
    Previous work introduced an approach for formally describing the concept of operations for unmanned aircraft. For this purpose, an existing language for simulation scenario description was adapted. In the context of the specific operation category, an upcoming European regulation for the operation of unmanned aircraft, the description and acceptance of the concept of operations plays a major role for flight approval on a per mission basis. This paper extends the previous approach further with combining the formalized description of the concept of operations with our existing approach for runtime monitoring. Monitoring the behavior at runtime can be used to enforce certain limits on the behavior. Therefore, the concept of operations is an ideal input for the monitoring approach. As a basis for the information relevant for the concept of operations the official annex to the guidelines document for the specific operation risk assessment is used, as well as an internal concept of operations document for a DLR research unmanned aircraft system

    Model Predictive Control for Signal Temporal Logic Specification

    Get PDF
    We present a mathematical programming-based method for model predictive control of cyber-physical systems subject to signal temporal logic (STL) specifications. We describe the use of STL to specify a wide range of properties of these systems, including safety, response and bounded liveness. For synthesis, we encode STL specifications as mixed integer-linear constraints on the system variables in the optimization problem at each step of a receding horizon control framework. We prove correctness of our algorithms, and present experimental results for controller synthesis for building energy and climate control

    Can We Monitor All Multithreaded Programs?

    Get PDF
    International audienceRuntime Verification (RV) is a lightweight formal method which consists in verifying that an execution of a program is correct wrt a specification. The specification formalizes with properties the expected correct behavior of the system. Programs are instrumented to extract necessary information from the execution and feed it to monitors tasked with checking the properties. From the perspective of a monitor, the system is a black box; the trace is the only system information provided. Parallel programs generally introduce an added level of complexity on the program execution due to concurrency. A concurrent execution of a parallel program is best represented as a partial order. A large number of RV approaches generate monitors using formalisms that rely on total order, while more recent approaches utilize formalisms that consider multiple traces. In this tutorial, we review some of the main RV approaches and tools that handle multithreaded Java programs. We discuss their assumptions, limitations, ex-pressiveness, and suitability when tackling parallel programs such as producer-consumer and readers-writers. By analyzing the interplay between specification formalisms and concurrent executions of programs, we identify four questions RV practitioners may ask themselves to classify and determine the situations in which it is sound to use the existing tools and approaches
    corecore