5,539 research outputs found

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    An automatic tool flow for the combined implementation of multi-mode circuits

    Get PDF
    A multi-mode circuit implements the functionality of a limited number of circuits, called modes, of which at any given time only one needs to be realised. Using run-time reconfiguration of an FPGA, all the modes can be implemented on the same reconfigurable region, requiring only an area that can contain the biggest mode. Typically, conventional run-time reconfiguration techniques generate a configuration for every mode separately. To switch between modes the complete reconfigurable region is rewritten, which often leads to very long reconfiguration times. In this paper we present a novel, fully automated tool flow that exploits similarities between the modes and uses Dynamic Circuit Specialization to drastically reduce reconfiguration time. Experimental results show that the number of bits that is rewritten in the configuration memory reduces with a factor from 4.6X to 5.1X without significant performance penalties

    Time-Shared Execution of Realtime Computer Vision Pipelines by Dynamic Partial Reconfiguration

    Full text link
    This paper presents an FPGA runtime framework that demonstrates the feasibility of using dynamic partial reconfiguration (DPR) for time-sharing an FPGA by multiple realtime computer vision pipelines. The presented time-sharing runtime framework manages an FPGA fabric that can be round-robin time-shared by different pipelines at the time scale of individual frames. In this new use-case, the challenge is to achieve useful performance despite high reconfiguration time. The paper describes the basic runtime support as well as four optimizations necessary to achieve realtime performance given the limitations of DPR on today's FPGAs. The paper provides a characterization of a working runtime framework prototype on a Xilinx ZC706 development board. The paper also reports the performance of realtime computer vision pipelines when time-shared

    Timing verification of dynamically reconfigurable logic for Xilinx Virtex FPGA series

    Get PDF
    This paper reports on a method for extending existing VHDL design and verification software available for the Xilinx Virtex series of FPGAs. It allows the designer to apply standard hardware design and verification tools to the design of dynamically reconfigurable logic (DRL). The technique involves the conversion of a dynamic design into multiple static designs, suitable for input to standard synthesis and APR tools. For timing and functional verification after APR, the sections of the design can then be recombined into a single dynamic system. The technique has been automated by extending an existing DRL design tool named DCSTech, which is part of the Dynamic Circuit Switching (DCS) CAD framework. The principles behind the tools are generic and should be readily extensible to other architectures and CAD toolsets. Implementation of the dynamic system involves the production of partial configuration bitstreams to load sections of circuitry. The process of creating such bitstreams, the final stage of our design flow, is summarized

    Self-Partial and Dynamic Reconfiguration Implementation for AES using FPGA

    Get PDF
    This paper addresses efficient hardware/software implementation approaches for the AES (Advanced Encryption Standard) algorithm and describes the design and performance testing algorithm for embedded system. Also, with the spread of reconfigurable hardware such as FPGAs (Field Programmable Gate Array) embedded cryptographic hardware became cost-effective. Nevertheless, it is worthy to note that nowadays, even hardwired cryptographic algorithms are not so safe. From another side, the self-reconfiguring platform is reported that enables an FPGA to dynamically reconfigure itself under the control of an embedded microprocessor. Hardware acceleration significantly increases the performance of embedded systems built on programmable logic. Allowing a FPGA-based MicroBlaze processor to self-select the coprocessors uses can help reduce area requirements and increase a system's versatility. The architecture proposed in this paper is an optimal hardware implementation algorithm and takes dynamic partially reconfigurable of FPGA. This implementation is good solution to preserve confidentiality and accessibility to the information in the numeric communication
    • …
    corecore