6,816 research outputs found

    Power-Adaptive Computing System Design for Solar-Energy-Powered Embedded Systems

    Get PDF

    An Energy-Efficient Reconfigurable Circuit Switched Network-on-Chip

    Get PDF
    Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture for multi-tile System-on-Chip (SoC) architectures. The SoC architecture, including its run-time software, can replace inflexible ASICs for future ambient systems. These ambient systems have to be flexible as well as energy-efficient. To find an energy-efficient solution for the communication network we analyze three wireless applications. Based on their communication requirements we observe that revisiting of the circuit switching techniques is beneficial. In this paper we propose a new energy-efficient reconfigurable circuit-switched Network-on-Chip. By physically separating the concurrent data streams we reduce the overall energy consumption. The circuit-switched router has been synthesized and analyzed for its power consumption in 0.13 Âżm technology. A 5-port circuit-switched router has an area of 0.05 mm2 and runs at 1075 MHz. The proposed architecture consumes 3.5 times less energy compared to its packet-switched equivalen

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    An Energy and Performance Exploration of Network-on-Chip Architectures

    Get PDF
    In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs

    Energy Model of Networks-on-Chip and a Bus

    Get PDF
    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon-Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both NoC architectures to predict their energy consumption per transported bit. Both architectures are also compared with a traditional bus architecture. The energy model is primarily needed to find a near optimal run-time mapping (from an energy point of view) of inter-process communication to NoC link

    Network-aware design-space exploration of a power-efficient embedded application

    Get PDF
    The paper presents the design and multi-parameter optimization of a networked embedded application for the health-care domain. Several hardware, software, and application parameters, such as clock frequency, sensor sampling rate, data packet rate, are tuned at design- and run-time according to application specifications and operating conditions to optimize hardware requirements, packet loss, power consumption. Experimental results show that further power efficiency can be achieved by considering also communication aspects during design space exploratio

    High quality testing of grid style power gating

    No full text
    This paper shows that existing delay-based testing techniques for power gating exhibit fault coverage loss due to unconsidered delays introduced by the structure of the virtual voltage power-distribution-network (VPDN). To restore this loss, which could reach up to 70.3% on stuck-open faults, we propose a design-for-testability (DFT) logic that considers the impact of VPDN on fault coverage in order to constitute the proper interface between the VPDN and the DFT. The proposed logic can be easily implemented on-top of existing DFT solutions and its overhead is optimized by an algorithm that offers trade-off flexibility between test-application-time and hardware overhead. Through physical layout SPICE simulations, we show complete fault coverage recovery on stuck-open faults and 43.2% test-application-time improvement compared to a previously proposed DFT technique. To the best of our knowledge, this paper presents the first analysis of the VPDN impact on test qualit
    • 

    corecore