4 research outputs found

    Rule-based reasoning and neural network perception for safe off-road robot mobility

    Get PDF
    ┬й 2002 Blackwell. The definitive version is available at www3.interscience.wiley.comDOI: 10.1111/1468-0394.00204Operational safety and health monitoring are critical matters for autonomous field mobile robots such as planetary rovers operating on challenging terrain. This paper describes relevant rover safety and health issues and presents an approach to maintaining vehicle safety in a mobility and navigation context. The proposed rover safety module is composed of two distinct components: safe attitude (pitch and roll) management and safe traction management. Fuzzy logic approaches to reasoning about safe attitude and traction management are presented, wherein inertial sensing of safety status and vision-based neural network perception of terrain quality are used to infer safe speeds of traversal. Results of initial field tests and laboratory experiments are also described. The approach provides an intrinsic safety cognizance and a capacity for reactive mitigation of robot mobility and navigation risks

    Navigation Techniques for Control of Multiple Mobile Robots

    Get PDF
    The investigation reported in this thesis attempt to develop efficient techniques for the control of multiple mobile robots in an unknown environment. Mobile robots are key components in industrial automation, service provision, and unmanned space exploration. This thesis addresses eight different techniques for the navigation of multiple mobile robots. These are fuzzy logic, neural network, neuro-fuzzy, rule-base, rule-based-neuro-fuzzy, potential field, potential-field-neuro-fuzzy, and simulated-annealing- potential-field- neuro-fuzzy techniques. The main components of this thesis comprises of eight chapters. Following the literature survey in Chapter-2, Chapter-3 describes how to calculate the heading angle for the mobile robots in terms of left wheel velocity and right wheel velocity of the robot. In Chapter-4 a fuzzy logic technique has been analysed. The fuzzy logic technique uses different membership functions for navigation of the multiple mobile robots, which can perform obs..

    Dynamic Analysis of Cracked Rotor in Viscous Medium and its Crack Diagnosis Using Intelligent Techniques

    Get PDF
    Fatigue cracks have high potential to cause catastrophic failures in the rotor which can lead to catastrophic failure if undetected properly and in time. This fault may interrupt smooth, effective and efficient operation and performance of the machines. Thereby the importance of identification of crack in the rotor is not only for leading safe operation but also to prevent the loss of economy and lives.The condition monitoring of the engineering systems is attracted by the researchers and scientists very much to invent the automated fault diagnosis mechanism using the change in dynamic response before and after damage. When the rotor with transverse crack immersed in the viscous fluid, analysis of cracked rotor is difficult and complex. The analysis of cracked rotor partially submerged in the viscous fluid is widely used in various engineering systems such as long spinning shaft used drilling the seabed for the extracting the oil, high-speed turbine rotors, and analysis of centrifuges in a fluid medium. Therefore, dynamic analysis of cracked rotor partially submerged in the viscous medium have been presented in the current study. The theoretical analysis has been performed to measure the vibration signatures (Natural Frequencies and Amplitude) of multiple cracked mild steel rotor partially submerged in the viscous medium. The presence of the crack in rotor generates an additional flexibility. That is evaluated by strain energy release rate given by linear fracture mechanics. The additional flexibility alters the dynamic characteristics of cracked rotor in a viscous fluid. The local stiffness matrix has been calculated by the inverse of local dimensionless compliance matrix. The finite element analysis has been carried out to measure the vibration characteristics of cracked rotor partially submerged in the viscous medium using commercially available finite element software package ANSYS. It is observed from the current analysis, the various factors such as the viscosity of fluid, depth and position of the cracks affect the performance of the rotor and effectiveness of crack detection techniques. Various Artificial Intelligent (AI) techniques such as fuzzy logic, hybrid BPNN-RBFNN neural network, MANFIS and hybrid fuzzy-rule base controller based multiple faults diagnosis systems are developed using the dynamic response of rotating cracked rotor in a viscous medium to monitor the presence of crack. Experiments have been conducted to authenticate the performance and accuracy of proposed methods. Good agreement is observed between the results
    corecore