21,994 research outputs found

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Adaptation Conflicts of Heterogeneous Devices in Iot Smart-Home

    Get PDF
    A promising technology such as Internet-of-Things have been introduced into traditional homes, buildings and cities to become smart and offer a wide range of services to simplify and enhance people’s lifestyle, a complex rule structure with a large number of sensing and actuating devices increases the chances of creating rules with faulty behaviors. Detection of sophisticated conflicts in an IoT system is one example of such faulty systems. In this paper, a mechanism is presented to detect such sophisticated conflicts among multi-resident smart-home services. Formally a model considering the functional properties of devices to distinguish a specific new kind of conflicts among the other basic types. Service User Regularity (SUR) conflict detection algorithm is proposed to trace resident habitual usage and behaviour conflicts and regulate them within the rules of the smart-home IoT-system. The system achieved good result; it could detect a reasonable number of targeted type conflicts within a synthesized data set

    Policy-driven Security Management for Gateway-Oriented Reconfigurable Ecosystems

    Get PDF
    abstract: With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands. However, with the introduction and rising use of wear- able technology and evolving uses of smart-phones, the concept of Internet of Things (IoT) has become a prevailing notion in the currently growing technology industry. Cisco Inc. has projected a data creation of approximately 403 Zetabytes (ZB) by 2018. The combination of bringing benign devices and connecting them to the web has resulted in exploding service and data aggregation requirements, thus requiring a new and innovative computing platform. This platform should have the capability to provide robust real-time data analytics and resource provisioning to clients, such as IoT users, on-demand. Such a computation model would need to function at the edge-of-the-network, forming a bridge between the large cloud data centers and the distributed connected devices. This research expands on the notion of bringing computational power to the edge- of-the-network, and then integrating it with the cloud computing paradigm whilst providing services to diverse IoT-based applications. This expansion is achieved through the establishment of a new computing model that serves as a platform for IoT-based devices to communicate with services in real-time. We name this paradigm as Gateway-Oriented Reconfigurable Ecosystem (GORE) computing. Finally, this thesis proposes and discusses the development of a policy management framework for accommodating our proposed computational paradigm. The policy framework is designed to serve both the hosted applications and the GORE paradigm by enabling them to function more efficiently. The goal of the framework is to ensure uninterrupted communication and service delivery between users and their applications.Dissertation/ThesisMasters Thesis Computer Science 201

    EnvGuard: Guaranteeing Environment-Centric Safety and Security Properties in Web of Things

    Full text link
    Web of Things (WoT) technology facilitates the standardized integration of IoT devices ubiquitously deployed in daily environments, promoting diverse WoT applications to automatically sense and regulate the environment. In WoT environment, heterogeneous applications, user activities, and environment changes collectively influence device behaviors, posing risks of unexpected violations of safety and security properties. Existing work on violation identification primarily focuses on the analysis of automated applications, lacking consideration of the intricate interactions in the environment. Moreover, users' intention for violation resolving strategy is much less investigated. To address these limitations, we introduce EnvGuard, an environment-centric approach for property customizing, violation identification and resolution execution in WoT environment. We evaluated EnvGuard in two typical WoT environments. By conducting user studies and analyzing collected real-world environment data, we assess the performance of EnvGuard, and construct a dataset from the collected data to support environment-level violation identification. The results demonstrate the superiority of EnvGuard compared to previous state-of-the-art work, and confirm its usability, feasibility and runtime efficiency

    Automation of Smart Homes with Multiple Rule Sources

    Full text link
    Using rules for home automation presents several challenges, especially when considering multiple stakeholders in addition to residents, such as homeowners, local authorities, energy suppliers, and system providers, who will wish to contribute rules to safeguard their interests. Managing rules from various sources requires a structured procedure, a relevant policy, and a designated authority to ensure authorized and correct contributions and address potential conflicts. In addition, the smart home rule language needs to express conditions and decisions at a high level of abstraction without specifying implementation details such as interfaces, access protocols, and room layout. Decoupling high-level decisions from these details supports the transferability and adaptability of rules to similar homes. This separation also has important implications for structuring the smart home system and the security architecture. Our proposed approach and system implementation introduce a rule management process, a rule administrator, and a domain-specific rule language to address these challenges. In addition, the system provides a learning process that observes residents, detects behavior patterns, and derives rules which are then presented as recommendations to the system

    Smart object-oriented access control: Distributed access control for the Internet of Things

    Get PDF
    Ensuring that data and devices are secure is of critical importance to information technology. While access control has held a key role in traditional computer security, its role in the evolving Internet of Things is less clear. In particular, the access control literature has suggested that new challenges, such as multi-user controls, fine-grained controls, and dynamic controls, prompt a foundational re-thinking of access control. We analyse these challenges, finding instead that the main foundational challenge posed by the Internet of Things involves decentralization: accurately describing access control in Internet of Things environments (e.g., the Smart Home) requires a new model of multiple, independent access control systems. To address this challenge, we propose a meta-model (i.e., a model of models): Smart Object-Oriented Access Control (SOOAC). This model is an extension of the XACML framework, built from principles relating to modularity adapted from object-oriented programming and design. SOOAC draws attention to a new class of problem involving the resolution of policy conflicts that emerge from the interaction of smart devices in the home. Contrary to traditional (local) policy conflicts, these global policy conflicts emerge when contradictory policies exist across multiple access control systems. We give a running example of a global policy conflict involving transitive access. To automatically avoid global policy conflicts before they arise, we extend SOOAC with a recursive algorithm through which devices communicate access requests before allowing or denying access themselves. This algorithm ensures that both individual devices and the collective smart home are secure. We implement SOOAC within a prototype smart home and assess its validity in terms of effectiveness and efficiency. Our analysis shows that SOOAC is successful at avoiding policy conflicts before they emerge, in real time. Finally, we explore improvements that can be made to SOOAC and suggest directions for future work

    A Comprehensive Security Framework for Securing Sensors in Smart Devices and Applications

    Get PDF
    This doctoral dissertation introduces novel security frameworks to detect sensor-based threats on smart devices and applications in smart settings such as smart home, smart office, etc. First, we present a formal taxonomy and in-depth impact analysis of existing sensor-based threats to smart devices and applications based on attack characteristics, targeted components, and capabilities. Then, we design a novel context-aware intrusion detection system, 6thSense, to detect sensor-based threats in standalone smart devices (e.g., smartphone, smart watch, etc.). 6thSense considers user activity-sensor co-dependence in standalone smart devices to learn the ongoing user activity contexts and builds a context-aware model to distinguish malicious sensor activities from benign user behavior. Further, we develop a platform-independent context-aware security framework, Aegis, to detect the behavior of malicious sensors and devices in a connected smart environment (e.g., smart home, offices, etc.). Aegis observes the changing patterns of the states of smart sensors and devices for user activities in a smart environment and builds a contextual model to detect malicious activities considering sensor-device-user interactions and multi-platform correlation. Then, to limit unauthorized and malicious sensor and device access, we present, kratos, a multi-user multi-device-aware access control system for smart environment and devices. kratos introduces a formal policy language to understand diverse user demands in smart environment and implements a novel policy negotiation algorithm to automatically detect and resolve conflicting user demands and limit unauthorized access. For each contribution, this dissertation presents novel security mechanisms and techniques that can be implemented independently or collectively to secure sensors in real-life smart devices, systems, and applications. Moreover, each contribution is supported by several user and usability studies we performed to understand the needs of the users in terms of sensor security and access control in smart devices and improve the user experience in these real-time systems
    • …
    corecore