3 research outputs found

    Exploring Predicate Based Access Control for Cloud Workflow Systems

    Get PDF
    Authentication and authorization are the two crucial functions of any modern security and access control mechanisms. Authorization for controlling access to resources is a dynamic characteristic of a workflow system which is based on true business dynamics and access policies. Allowing or denying a user to gain access to a resource is the cornerstone for successful implementation of security and controlling paradigms. Role based and attribute based access control are the existing mechanisms widely used. As per these schemes, any user with given role or attribute respectively is granted applicable privileges to access a resource. There is third approach known as predicate based access control which is less explored. We intend to throw light on this as it provides more fine-grained control over resources besides being able to complement with existing approaches. In this paper we proposed a predicate-based access control mechanism that caters to the needs of cloud-based workflow systems

    Semantic hierarchies for extracting, modeling, and connecting compliance requirements in information security control standards

    Get PDF
    Companies and government organizations are increasingly compelled, if not required by law, to ensure that their information systems will comply with various federal and industry regulatory standards, such as the NIST Special Publication on Security Controls for Federal Information Systems (NIST SP-800-53), or the Common Criteria (ISO 15408-2). Such organizations operate business or mission critical systems where a lack of or lapse in security protections translates to serious confidentiality, integrity, and availability risks that, if exploited, could result in information disclosure, loss of money, or, at worst, loss of life. To mitigate these risks and ensure that their information systems meet regulatory standards, organizations must be able to (a) contextualize regulatory documents in a way that extracts the relevant technical implications for their systems, (b) formally represent their systems and demonstrate that they meet the extracted requirements following an accreditation process, and (c) ensure that all third-party systems, which may exist outside of the information system enclave as web or cloud services also implement appropriate security measures consistent with organizational expectations. This paper introduces a step-wise process, based on semantic hierarchies, that systematically extracts relevant security requirements from control standards to build a certification baseline for organizations to use in conjunction with formal methods and service agreements for accreditation. The approach is demonstrated following a case study of all audit-related controls in the SP-800-53, ISO 15408-2, and related documents. Accuracy, applicability, consistency, and efficacy of the approach were evaluated using controlled qualitative and quantitative methods in two separate studies
    corecore